UNIMODULAR MATRICES IN BANACH ALGEBRA THEORY

GUSTAVO CORACH AND ANGEL R. LAROTONDA

ABSTRACT. Let A be a ring with 1 and denote by L (resp. R) the set of left (resp. right) invertible elements of A. If A has an involution *, there is a natural bijection between L and R. In general, it seems that there is no such bijection; if A is a Banach algebra, L and R are open subsets of A, and they have the same cardinality. More generally, we prove that the spaces $U_k(A^n)$ of $n \times k$ -left-invertible matrices and ${}_kU(A^n)$ of $k \times n$ -right-invertible matrices are homotopically equivalent. As a corollary, we answer negatively two questions of Rieffel [12].

- 1. Let A be a ring (with an identity element 1) and $k \le n$. A matrix $x \in A^{n \times k}$ is unimodular if there exists $y \in A^{k \times n}$ such that $y \cdot x = 1 \in M_k(A) = A^{k \times k}$. We denote by $U_k(A^n)$ the set of all unimodular matrices of $A^{n \times k}$, and $S_k(A^n) = \{(x, y) \in A^{n \times k} \times A^{k \times n}: y \cdot x = 1\}$. The first projection induces a mapping $p: S_k(A^n) \to U_k(A^n)$.
- 1.1. PROPOSITION. Let A be a ring, $x \in A^{n \times k}$, and define T_x : $M_n(A) \to A^{n \times k}$ by $T_x(\sigma) = \sigma x$. Then x is unimodular if and only if T_x is a direct epimorphism; i.e., there is an A-linear map S: $A^{n \times k} \to M_n(A)$ such that $T_x \circ S = 1_{A^{n \times k}}$.

PROOF. Obvious.

From now on, A denotes a (real or complex) Banach algebra. Our purpose is to study the fibration properties of the mappings

$$t_x = T_x | \mathrm{GL}_n(A) \colon \mathrm{GL}_n(A) \to U_k(A^n),$$
 for $x \in U_k(A^n)$ and $p \colon S_k(A^n) \to U_k(A^n).$

- 1.2. LEMMA. (i) $U_k(A^n)$ is open in $A^{n \times k}$.
- (ii) t_x is continuous, for every $x \in U_k(A^n)$.
- (iii) p is continuous.

PROOF. It is clear that t_x and p are continuous, because they are restrictions of linear mappings. If $x_0 \in A^{n \times k}$ is unimodular and $y \cdot x_0 = 1 \in M_k(A)$, there is a neighborhood U of x_0 in $A^{n \times k}$ such that $y \cdot x \in \operatorname{GL}_k(A)$ for every $x \in U$, for the set of invertible elements of a Banach algebra is open. But it is evident that U is contained in $U_k(A^n)$. Thus $U_k(A^n)$ is open as claimed.

In view of the theory of Banach manifolds, as developed in Lang [7], we can prove the next result. Recall that a differentiable map $f: X \to Y$ is a *submersion* at $x \in X$ if the derivative of f at $x \in X$ is a direct epimorphism from the tangent space of X at X onto the tangent space of Y at f(x).

Received by the editors June 19, 1984 and, in revised form, March 1, 1985. 1980 Mathematics Subject Classification. Primary 46H05, 18F25; Secondary 55R10, 55P10, 16A25.

- 1.3. Proposition. Let A be a Banach algebra and $x \in A^{n \times k}$. Then the following hold
 - (1) If $x \in U_k(A^n)$, then t_x : $GL_n(A) \to U_k(A^n)$ is a submersion.
 - (2) $S_k(A^n)$ is a Banach manifold.
- PROOF. (1) If $x \in U_k(A^n)$, the derivative of t_x at any $\sigma \in GL_n(A)$ coincides with T_x , which is a direct epimorphism, by 1.1, so t_x is a submersion at σ .
- (2) Following Raeburn [11], we need only prove that the derivative of ϕ : $A^{n \times k} \times A^{k \times n} \to M_k(A)$, defined by $\phi(x, y) = y \cdot x$, at any $(x_0, y_0) \in S_k(A^n)$ is a direct epimorphism for $S_k(A^n) = \phi^{-1}(1)$.

Now, the derivative of ϕ at (x_0, y_0) is the A-linear map $(w, z) \to z \cdot x_0 + y_0 \cdot w$ $(w \in A^{n \times k}, z \in Z^{k \times n})$, and the map $a \to 1/2(x_0 a, a y_0)$ $(a \in M_k(A))$ is a right inverse of $D\phi(x_0, y_0)$.

1.4. COROLLARY. For every $x \in U_k(A^n)$, the map t_x : $GL_n(A) \to U_k(A^n)$ is open, and its image $GL_n(A) \cdot x$ is open and closed in $U_k(A^n)$.

PROOF. Clearly a submersion is an open map. Thus, for every $z \in U_k(A^n)$, $GL_n(A) \cdot z$ is open in $U_k(A^n)$. But $GL_n(A) \cdot z$ is the orbit of z under the action of $GL_n(A)$ on $U_k(A^n)$ given by left multiplication, so it is closed in $U_k(A^n)$: in fact, when all orbits are open, they are also closed.

- 1.5. Remarks. (1) Observe that, if $z \in U_k(A^n)$ belongs to the orbit $\mathrm{GL}_n(A) \cdot x$, the entire connected component of z in $U_k(A^n)$ is contained in the same orbit. This obvious (in view of 1.4) fact has interesting consequences, as we shall see.
- (2) If in the proof of 1.4 we consider the action of $GL_n(A)_0$, the connected component of the neutral element, on $U_k(A^n)$, we get that the connected component of x in $U_k(A^n)$ is $GL_n(A)_0 \cdot x$.
- 1.6. THEOREM. Let A be a Banach algebra and $x \in U_k(A^n)$. Then the following hold.
 - (i) t_x induces a principal locally trivial fibre bundle $GL_n(A) \to GL_n(A) \cdot x$.
 - (ii) t_x : $GL_n(A) \to U_k(A^n)$ is a Serre fibration.
- (iii) t_x is surjective if and only if the induced mapping $\pi_0(t_x)$: $\pi_0(GL_n(A)) \to \pi_0(U_k(A^n))$ is onto. In particular, t_x is surjective if $U_k(A^n)$ is connected.

PROOF. Let G_x be the stabilizer of x; i.e., $G_x = \{ \sigma \in GL_n(A) : \sigma \cdot x = x \}$. Then G_x is a Banach-Lie subgroup of $GL_n(A)$, and, by 1.4, $GL_n(A) \cdot x$ may be identified with the homogeneous space $GL_n(A)/G_x$. So, assertion (i) follows from the general theory of Banach-Lie groups as Bourbaki [1] or Raeburn [11].

For the proof of (ii), it is well known that any locally trivial bundle over a paracompact base space is a Serre fibration (see Dold [3]). In our case, $U_k(A^n)$ is metrizable, a fortiori paracompact. The proof of (iii) is now obvious.

The problem of determining whether an element z of $U_k(A^n)$ belongs to $GL_n(A^n) \cdot x$ for a fixed $x \in U_k(A^n)$ is, in general, very difficult. Let us give an example. Let A be the algebra of real continuous functions on the unit sphere S^{n-1} of R^n , and let x_i , i = 1, ..., n, be the coordinate functions. Clearly, $x = (x_1, ..., x_n)$ belongs to

 $U_1(A^n)$ for $x \cdot {}'x = \sum_{i=1}^n x_i^2 = 1$. Let t be the map $\sigma \to \sigma \cdot e_1$ (where e_1 is the first canonical vector of A^n) from $\operatorname{GL}_n(A)$ into $U_1(A^n)$. We shall show that x belongs to $\operatorname{GL}_n(A) \cdot e_1$ only if n = 2, 4, or 8. In fact, $x \in \operatorname{GL}_n(A) \cdot e_1$ means that there is a basis $\{v_1, v_2, \ldots, v_n\}$ of A^n with $v_1 = x$. Let S be the free supplement of $A \cdot x$ generated by $\{v_2, \ldots, v_n\}$ and $S' = \{v \in A^n : \langle v, x \rangle = 0\}$. Then S' is another supplement of $A \cdot x$, so S and S' are isomorphic and S' must be free. But S' identifies with the A-module of continuous sections of the tangent bundle $\tau(S^{n-1})$ of S^{n-1} (see Swan [13]). Thus, since S' is free, $\tau(S^{n-1})$ must be a trivial bundle, and this may happen only if n = 2, 4, or 8, as claimed.

Let A be a ring, and let e be the $n \times k$ -matrix whose columns are, in order, the first k canonical vectors of A^n . Let us set $t = t_e$: $GL_n(A) \to U_k(A^n)$. A is (n, k)-Hermite if t is onto. (This terminology is consistent with that of Lam [6], at least for commutative rings.) The following lemma shows that the choice of e is irrelevant.

1.7. LEMMA. Let A be a ring. Then A is (n, k)-Hermite if and only if t_x : $GL_n(A) \to U_k(A^n)$ is onto for every $x \in U_k(A^n)$.

PROOF. Suppose that A is (n, k)-Hermite, and take z and x in $U_k(A^n)$. Then there exist τ and σ in $GL_n(A)$ such that $z = \tau \cdot e$ and $x = \sigma \cdot e$; then $t_x(\tau \sigma^{-1}) = \tau \cdot \sigma^{-1} \cdot x = z$. The converse is trivial.

From 1.6(iii) we get

- 1.8. PROPOSITION. Let A be a Banach algebra. Then A is (n, k)-Hermite if and only if $\pi_0(t)$ is onto. In particular, A is (n, k)-Hermite if $U_k(A^n)$ is connected.
- 1.9. Examples. (1) Let A be a complex commutative Banach algebra with spectrum X(A). It is well known that $\pi_0(U_k(A^n))$ coincides with the set of homotopy classes of maps from X(A) into $U_k(\mathbb{C}^n)$ (see Novodvorski [9], Taylor [14] and Raeburn [11]). Lin [8] proved that A is (n,k)-Hermite if and only if C(X(A)), the algebra of complex continuous functions on X(A), is; moreover, for x and z in $U_k(A^n)$, z belongs to $\mathrm{GL}_n(A) \cdot x$ if and only if the Gelfand transform \hat{z} belongs to $\mathrm{GL}_n(C(X(A))) \cdot \hat{x}$. In particular, if X(A) is dominated by an m-dimensional space, with $m \leq 2(n-k)$, then A is (n,k)-Hermite. This last fact has also been proved by Lin [8].
- (2) Let \mathcal{H} be a Hilbert space and A the algebra of bounded linear operators on \mathcal{H} . Then $\mathrm{GL}_n(A)$ is contractible for every n (Kuiper [5]). Now, A is isomorphic to $A^{n\times k}$ (as A-modules and as Banach spaces), and it is easy to see that $U_k(A^n)$ is homeomorphic to $U_1(A^1)$, which is disconnected, as we shall see 2.6(iii). Then A cannot be (n, k)-Hermite for any $k \leq n$.
- (3) If the stable range of A is $\leq n k$, A is (n, k)-Hermite (see Corach and Larotonda [21]).
- **2.** In this section we study the fibration properties of the map $p: S_k(A^n) \to U_k(A^n)$ when A is a Banach algebra.

2.1. THEOREM. Let A be a Banach algebra. Then the projection onto the first coordinate $p: S_k(A^n) \to U_k(A^n)$ is a locally trivial bundle with contractible fibre.

PROOF. For $(x_0, y_0) \in S_k(A^n)$ we define $\phi: A^{n \times k} \to \operatorname{GL}_n(A) \cdot x_0 \subset A^{n \times k}$ by $\phi(z) = \exp(x, y_0) \cdot x_0$. The derivative of ϕ at $0 \in A^{n \times k}$ is the identity map of $A^{n \times k}$, so by the inverse function theorem [1, 7] there exist neighborhoods U of 0 in $A^{n \times k}$ and V of x_0 in $U_k(A^n)$ such that ϕ is a diffeomorphism from U onto V. We define a section of t_{x_0} over V, $s: V \to \operatorname{GL}_n(A)$, by $s(x) = \exp(\phi^{-1}(x) \cdot y_0)$: In fact, $t_x \circ s(x) = s(x) \cdot x_0 = x$ for every $x \in V$ and $s(x_0) = 1_{M_n(A)}$.

We now define a trivializing map $g: p^{-1}(V) \to V \times N$ by $g(x, y) = (x, y \cdot s(x) - y_0)$, where $N = \{ y \in A^{k \times n}: y \cdot x_0 = 0 \}$; the inverse of g is $h: V \times N \to p^{-1}(V)$, $h(x, z) = (x, (z + y_0) \cdot s(x)^{-1})$. The fibre $p^{-1}(x)$, for $x \in V$, is the affine manifold $\{(x, (y + y_0) \cdot s(x)^{-1}): y \in N\}$, obviously contractible.

2.2. COROLLARY. The projection p is a homotopy equivalence and it admits a global section.

PROOF. From the examination of the homotopy sequence of p, it follows that p is a weak homotopy equivalence, so, by a result of Palais [10, Theorem 15], since $S_k(A^n)$ and $U_k(A^n)$ are metrizable manifolds (by 1.2 and 1.3), p is a homotopy equivalence. The second assertion follows from a result of Godement (see Dold [3, p. 223]) which states that a fibre bundle with contractible fibre over a paracompact space has a global section.

- 2.3. COROLLARY. For every compact pair (Z,Y), every map $f: (Z,Y) \rightarrow (U_k(A^n), x_0)$, and every $y_0 \in A^{k \times n}$ such that $y_0 \cdot x_0 = 1 \in M_k(A)$, there is a lifting $\bar{f}: (Z,Y) \rightarrow (S_k(A^n), (x_0, y_0))$; i.e., $p\bar{f} = f$.
- 2.4. COROLLARY. For every compact space X the natural inclusion $U_k(A(X)^n) \to C(X, U_k(A^n))$ (where A(X) is the algebra of maps from X into A) is a homeomorphism.

We have been studying left unimodular matrices. We can also consider right unimodular matrices: $y \in A^{k \times n}$ $(k \le n)$ is right unimodular if there exists $x \in A^{n \times k}$ such that $y \cdot x = 1 \in M_k(A)$. Of course, the set $_kU(A^n)$ of right unimodular matrices is the image of the second projection p_2 : $S_k(A^n) \to A^{k \times n}$. We may reproduce all the results obtained for $U_k(A^n)$ in this new context. In particular, we may prove that p_2 : $S_k(A^n) \to _kU(A^n)$ is a homotopy equivalence. Thus, we have

2.5. COROLLARY. $U_k(A^n)$ and $_kU(A^n)$ are homotopically equivalent.

REMARK. This result answers negatively question 4.8 of Rieffel [12] and generalizes his Proposition 10.2 to any Banach algebra A.

We now consider the case n = k = 1, so $U_1(A^1) = L$ and $U_1(A^1) = R$.

- 2.6. THEOREM. Let A be a Banach algebra. Then the following hold.
- (i) L and R are homotopically equivalent.
- (ii) The connected components of 1 in L, R and G (= group of units of A) coincide; in particular, G is connected if L or R are connected and, in this case, G = L = R. Thus, L and R are disconnected if $G \neq L$ or $G \neq R$.

The proof follows directly from 2.5 and the following obvious lemma.

2.7. LEMMA. G is open and closed in L and R.

REFERENCES

- 1. N. Bourbaki, Varietés, Fascicule de résultats, Hermann, Paris, 1967.
- 2. G. Corach and A. R. Larotonda, A stabilization theorem for Banach algebras, J. Algebra (to appear).
- 3. A. Dold, Partitions of unity in the theory of fibrations, Ann. of Math. (2) 78 (1963), 223-255.
- 4. S. T. Hu, Homotopy theory, Academic Press, New York, 1959.
- 5. N. Kuiper, The homotopy type of the unitary group of Hilbert space, Topology 3 (1965), 19-30.
- 6. T. Y. Lam, Serre's conjecture, Lecture Notes in Math., vol. 635, Springer-Verlag, Berlin and New York, 1978.
 - 7. S. Lang, Differentiable manifolds, Addison-Wesley, Reading, Mass., 1972.
- 8. V. Ya. Lin, Holomorphic fibering and multivalued functions of elements of a Banach algebra, Funct. Anal. Appl. 7 (1973), 122-128.
- 9. M. E. Novodvorski, Certain homotopical invariants of spaces of maximal ideals, Mat. Zametki (1967), 487-494.
 - 10. R. S. Palais, Homotopy theory of infinite dimensional manifolds, Topology 5 (1966), 1-16.
- 11. I. Raeburn, The relationship between a commutative Banach algebra and its maximal ideal space, J. Funct. Anal. 25 (1978), 366-390.
- 12. M. Rieffel, Dimension and stable rank in the K-theory of C*-algebras, Proc. London Math. Soc. (3) 46 (1983), 301-333.
 - 13. R. Swam, Vector bundles and projective bundles, Trans. Amer. Math. Soc. 105 (1962), 264-277.
- 14. J. L. Taylor, Topological invariants of the maximal ideal space of a Banach algebra, Adv. in Math. 19 (1976), 149-206.

Instituto Argentino de Matemática, Viamonte 1636, 1055 Buenos Aires, Argentina

DEPARTAMENTO DE MATEMÁTICS, FACULTAD DE CIENCIAS EXACTAS, UNIVERSIDAD DE BUENOS AIRES, CIUDAD UNIVERSITARIA, 1428 BUENOS AIRES, ARGENTINA