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BOUNDARY BEHAVIOR OF GREEN POTENTIALS

DANIEL H. LUECKING1

Abstract. A Green potential on the unit disk [\z\ < 1} is a function u(z) of the

form

1 - wz
.(,)-/ log ^ da(w).

where a is a positive measure such that ((1 - \w\) da(w) is finite. In this note I give

a necessary and sufficient condition on a relatively closed subset F of the unit disk

in order that, for all such u(z),

liminf(l -\z\)u(z) = 0.
F3:^l

The condition is that the hyperbolic capacity of the portion of F in arbitrarily small

neighborhoods of 1 is bounded away from zero.

1. Introduction. A theorem due to M. Heins [1, Theorem 6.1] states that, for a

Blaschke product B on the unit disk U = {z G C: |z| < 1} and any e'e g W,

(ii)        w-'Hiük)"*
A rather simpler proof was given in [3] by J. H. Shapiro and A. L. Shields. Then in

[2] W. C. Nestlerode and M. Stoll extended (1.1) to the unit polydisk in C", with the

function log(l/|5|) replaced by an arbitrary positive «-superharmonic function

whose greatest «-harmonic minorant is zero. In a later paper [4] Stoll took up the

question of boundary approach more general than the radial approach in (1.1). In

particular, he showed the following.

Theorem A. Let a be a positive measure on U such that / (1 — \w\) da(w) < + oo

and let

1 — wz
da(w).(1.2) W(z) = /log

J ij |    Z W

If y [0,1) -» Uis any curve satisfying lim,.^xy(t) = 1, then

(1.3) liminf(l -\y(t)\)u(y(t)e'e) = 0
f-«i

for any e¡e g dU.
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If B is a Blaschke product with zero set {a,,}, then log(l/|Z?|) has the form (1.2)

for the measure a which is concentrated on {an} and assigns to each an its

multiplicity as a zero of B. The finiteness of / (1 — \w\)da(w) is just the Blaschke

condition on the zeros of B. Thus Theorem A is a generalization of Hein's result. Of

course, functions of the form (1.2) are exactly the positive superharmonic functions

on U with zero for a greatest harmonic minorant, so the results of Nestlerode and

Stoll fit in the same context.

In this article I consider even more general boundary approach than along a curve

and, in fact, obtain necessary and sufficient conditions on a set, so that the analogue

of Theorem A is valid for approach along rotations of that set. First I shall establish

some terminology. A function u(z) of the form (1.2) is called a Green potential. The

condition /(l - |w|)Ja(H') < + oo is equivalent to the condition u * + oo. This is

because 1 — |w| < C, log|(l — wz)/(z — w)\, so if « is finite at even one point, then

1 — |w| G Lx(a). Conversely, if 1 - |w| G Lx(a), then Fubini's Theorem establishes

that u(z) is integrable with respect to area over (|z| < r) if r < 1. I use t)(E) to

denote the hyperbolic capacity of the set E c U. This notion will be defined in the

next section, where its necessary properties as well as its relationship to ordinary

logarithmic capacity are presented. The main result is the following.

Theorem 1. Let F be a relatively closed subset of U. Then a necessary and sufficient

condition on F in order that

(A) lim inf ( 1 — | z | ) « ( z ) = 0    for every Green potential u * + oo
Fsr^l

is that

(B) lim7](Fn{z: \z - 1| < e}) > 0.
F—>0

A word about (B) is in order. Let D(l,e) = {z: \z - 1| < e}. It turns out that

0 < t)(£) < 1 for all sets £, and that (B) occurs if and only if -q(F n £>(1, e)) = 1

for every e > 0. That is, the limit in (B) is always either 0 or 1.

If 1 £ F, the closure of F, then (B) is not satisfied and (A) is meaningless (which

we interpret as being not satisfied). So it is not with any loss of generality that I will

always assume leF. The implication (A) => (B) will be proved by showing some-

thing which is only apparently stronger: If (B) is not satisfied, then there is a Green

potential u ^ + oo such that liminfFg.^, (1 — |z|)w(z) = +oo. The measure a

corresponding to this u may be chosen with F as its support.

I maintain the convention that u denotes a Green potential, u ^ + oo, and a

denotes the corresponding measure with / (1 - \w\)da(w) < + oo. All measures are

positive Borel measures and the auxiliary measures p, pv that occur later will always

be finite.

I would like to thank M. Stoll for posing the question answered here. I wish to

acknowledge the hospitality of the Department of Mathematics at the University of

Tennessee, where much of the research was accomplished.
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2. Hyperbolic capacity. The concept of hyperbolic capacity is similar to that of

logarithmic capacity. It is defined in the same manner and differs only in that the

Green function replaces the logarithmic kernel. For the unit disk the Green function

is

g(z,w) = log(11 - wz\/\z - w\) s log(l/p(z,w)),

where p(z, w) is the usual pseudohyperbolic distance |z - w|/|l - wz\.

For an arbitrary Borel set E c U define

V(E) = inf jfg(z,w)dp(w)dp(z)

where the infimum is taken over all positive measures p of total mass 1 that are

supported on compact subsets of E. The (inner) hyperbolic capacity of E is defined

to be exp[-K(£)] and is denoted n(E). Clearly 0 ^ V(E) < + oo, soO < tj(£) < 1.

I will collect in this section the properties of hyperbolic capacity necessary for the

proof of the theorem. Some of these can be found in M. Tsuji's book [5]. For some I

will refer to the corresponding result for ordinary (logarithmic) capacity, with the

understanding that the proof is almost identical for hyperbolic (or almost any other)

capacity. Finally, I have been unable to find the proofs of one or two properties in

the literature, so I have included them.

It is clear that

(2.1) if£c£,   then i}(£) <»}(£).

One property we will need to obtain the (A) =» (B) implication is the existence of

an equilibrium distribution.

If £ is a compact subset of U, then there is a positive

measure p on 3£, of total mass 1, such that the infimum

defining    V(E)    is    attained.    The    function    v(z) =

(2.2) / g(z, w)dp(w) is everywhere bounded by V(E), is equal to

V(E) on £ except for a set with capacity zero, and is

identically V(E) on the interior of £. If V(E) < + oo, then

the measure p gives no mass to any set of capacity zero.

This is a combination of results [5, pp. 75-77, 95]. The next property is that of

outer regularity.

If {Gn} is a sequence of open sets with Gn+X c Gn for each n,

(2.3) and if C\Gn = £, a compact subset of U, then limn_00T)(G„)
= T,(£).

This can be found (for ordinary capacity) in [5, Theorem III.9].

A slight generalization of (2.2) will be required.

,     , The conclusions of (2.2) are unchanged if £ is only assumed

to be relatively closed in U, provided V(E) > 0.

Proof. Let £„ = £ n Z>(0,1 - l/n) so that £„ is compact, V„ = V(E„) ^ V =

V(E), and Vn -» V. If V = + oo, then all 1^, = + oo. Take the measures pn prom-

ised by (2.2) and let p = I2->„.
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So assume 0 < V < +00, and let pn be the equilibrium distribution for £„. Let p

be the weak* limit of the ju„ (as elements of C0(£)*). Clearly ju. > 0 and ju(£) < 1.

I claim that actually ¡u(£) = 1. To see this, let k < n and observe that

K< K'<=/.   /. S{z^)dpn{w)dpk(z)
Ek     E*

=  I     (   g(z,w)dpk{z)dpn(w)
JE„ JEk

= f   vk(w)dpn(w)< Vkpn(Fk) + eV,

where Fk — {w G £: p(z,w) < e~cV for some z & Ek), because vk < eFon U\Fk.

Fix A:, so that F< Kfc < (1 + e)K, to obtain pn(Fk) > (1 - e)/(l + e). Letting

n -> 00, we see that p(Fk) is arbitrarily close to 1, and so ju(£) = 1. It remains to

show that p has the required properties. Define gm(z, w) = min(m, g(z,tv)}. Then

v(z)=  f g(z,w)dp(w)=   lim   f gm(z,w)dp(w)
J m —* oc ^

=    lim    lim   í gm(z,w)dpn(w) <   lim   í g(z,w) dpn{w)
m —» oc n —* oc J n —* oc *

<   lim Vn = V.
«—►oc

Suppose V(z) < V — e on a compact set £ c £ with positive capacity. Then there is

an equilibrium distribution p' on £. Letting p" = (jtt + <5¡u')/(l + 8) leads to the

following estimates:

K<  ffg(z,w)dp"(z)dp"(w)

.   F+ 2(K- e)r3 + 52K(£) _ S(e-S(V(F) - V))

\ +28 + 82 I +28 + S2

< V   for small enough 8,

a contradiction.

Because each of the measures pn is supported on 3£„, it follows that p is

concentrated on 3£ n t/. It is automatic that ju cannot give any mass to a set of zero

capacity. For if K is compact with n(K) = 0 and ju.( AT) > 0, then

+ 00 = V(K)<  f   (  Z^l dp(z) dp(w) < -M- < +00,J*J*  MA-)2 M(^)

a contradiction.

Finally, if z0 is an interior point of £, then for large k and «, gk(z0, w) = g(z0, w)

a.e. with respect to p and pn. Thus

/ g(20,w)J/i(w) = j gk(z0,w)dp{w) = lim j gk{zQ,w)dpn(w)

= um f g(z0,w)dpn = limF„ = F.
n    J
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The discussion following Theorem 1 relies for its verification on the following

result.

,     . If £ contains the union of compact sets F„ such that inf{|z|:

(     ' zeFJ-»l, and if tj(£„) > r > 0, then n(E) = 1.

Proof. It need only be shown that for any 8 > 0 there is a measure on £ of total

mass 1 so that // g(z,w) dp(z) dp(w) < 8. Given any sequence sk -» 1 — , it is

possible to select a subsequence Fk of the compact sets £„ with inf{p(z,w):

zg£a'+1,wgU)=1£/}>5,.

Let pk be the equilibrium distribution for Fk. Let p" = N~x(px + ■ ■ ■ +pN) and

consider

K(£)<  ffg(z,w)dpN(z)dpN(x)

= —2 E // log -7-r ¿/*,(*) ̂ y(w)
AJ   ij P(z,w)

if A/ and { j; } are suitably chosen.

If Tj(£ n D(\, e)) > r > 0 for every e > 0 as in (B), then there exists a compact

set £, Ç £ n D(l, et) with tj(£,) > r. Choose e2 so that £, is disjoint from D(\, e2)

and find F2 ç £ n D(l,e2) with ^(ij) > r. Continuing in this manner produces

a sequence of sets in F n Z)(l, e,) satisfying the hypothesis of (2.5). Thus

tj(£ n 0(1, e,)) = 1. Since Ej is arbitrary, we get lime_>07j(£ n D(l, e)) = 1, pro-

vided (B) holds.

It is nearly obvious that hyperbolic capacity is invariant under Moebius transfor-

mations of the disk. It is easily established, for subsets £ of {z: |z| < 1/2}, that

hyperbolic capacity t/(£) is equivalent to logarithmic capacity y(E). That is, there

is a constant C (equal to 4/3 actually) such that y(E)/C < i?(£) < Cy(E).

Thus, the capacity r¡(E n {z: p(z, a) < 1/2}) can be estimated by estimating

y(Ma(E) Pi {|z| < 1/2}) where Ma(z) = (z - a)/(\ - 3z). If £ is a curve (as in

Theorem A) and a G £, then Ma(E) n {|z| < 1/2} contains a continuum of

diameter at least 1/2. By Theorems III.4 and III.5 of [5] it follows that there is a

lower bound on the logarithmic capacity of this set. Thus Stoll's theorem is a special

case of Theorem 1 : A curve £ tending to 1 satisfies

tj(£ n D(l,e)) > 7)(£n{z: p(z, a) < 1/2}) > 8 > 0,

provided a is close enough to 1 and a g £. Since (B) is satisfied, (A) follows, which

is the same as (1.3).
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3. The proof of Theorem 1. The first step in the proof is to reduce it to a statement

about finite measures. This is the same procedure used in [4]. Let S(a) = (z:

p(z,ö)< 1/2}.

Lemma. Let / (1 - \w\)da(w) < + oo and let dp(w) = (1 - \w\)da(w). Then

(i) lim (1 -|a|) /" g(z,a)da(z) = 0,
|a|-»l JU\S(a)

(ii) lim   f g(z,a)dp(z) = 0,
l«hl JU\S(a)

(iii) lim (l -\a„\)f       g(z,a„)da(z) = 0( + œ)    iff
n-»oo ^S(a„)

lim   /        g(z, an) dp(z) = 0    (respectively, + oo).
n -» oc ¿Si a„ )

Proof. For z <£ S(a), g(z,a) < log 2, and

g(z,a) < C(l - p(z,af) = C(l -|ö|2)(l -|z|2)/|l - äz\\

Thus the limit in (i) is dominated by

^Cj^ídpiz)
|«| —i    ^     |1 - az|2

which tends to zero by Lebesgue's theorem on bounded convergence. Similarly, the

integrand Xu\s(a)(z)s(z, a) in (ii) is bounded by log2 and tends pointwise to zero

as |a| -> 1, so again the limit is zero. Finally, (iii) follows because, on S(a),

(1 — |a|)/(l — |z|) is bounded above and away from zero, uniformly in a.

The proof of Theorem 1 will be accomplished by showing, with dp(z) =

(1 - \z\)dct(z), that under hypothesis (B), nmn_00 jS(a¡) g(z,an)dp(z) is zero for

some sequence an e F, a„ -* 1, and that if (B) fails then there is a finite measure p

such that / g(z, a)dp(z) -» + oo as a -> 1, a G F.

So assume (B). Then there exist compact sets F„ c F n D(\, en) such that the F„

are   disjoint,    e„ -» 0,   and   r](Fn) > 8 > 0.   Consider   the   function   /¡(f) =

JS([) g(z,Ç)dp(z).  We wish to find  a sequence  {a,,} c F,   a„ -* 1,  such  that

/¡(a„) -» 0.  This  is done by showing that   fF h($)dpn -> 0  for some positive

measures ju.„ on £„ with p„(Fn) = 1. To see that this is so, observe that

/ h(t)dpm(s)- ( f Xs(:)(ng(z,ndpM)dp(z)
F„ JU JF„

by Fubini's Theorem (and the fact that Xs($)(z) ~ Xs(Z)(f ))• If P» are chosen to be

the equilibrium distributions of £„, then the inner integral is at most log(l/<5) and is

zero for z £ F* = {z: p(z,w) < 1/2 some w G £„}. Thus

£ mo ¿M„tt)<iog(})/*(*;*)-*o

because £„* c Z)(l, IOeJ and fU>(l, 10e„) = 0.



BOUNDARY BEHAVIOR OF GREEN POTENTIALS 487

To get the converse suppose (B) is not satisfied and suppose first that

t/(£ Pi D(l, e)) = 0 for some e > 0. Simply let u be the measure promised in (2.4)

for F n D(\, e). Then / g(z,w)dp(w) = + oo on £ near 1, so its limit is also + oo.

Now assume tj(£ Pi D(\, e)) > 0 for all e > 0 and choose {e,,} decreasing to zero

so fast that, with £„ = £ n D(\, en)\D(l, e„ + 1) and 8„ = tj(£„), we have

L[log(l/<5„)]~1/2 < + oo. Let jti„ be the equilibrium distribution for En (from 2.5), so

that

/   g(z,w)dpn(w)= 1/ =log —

for z G En, except for a set of capacity zero. By lower semicontinuity

fE g(z,w)dpn(w)> Vn/2 on En\Fn, where Fn is a closed subset of E„ with

t¡(F„) = 0. Let p'n be any positive measure on £„ with p'„(Fn) = 1 satisfying the

conclusions of (2.4) with regard to F„. Then, with p = T.V,~x/2(p„ + p'„), we have

j g(z,w)dp(w)> Vx/1 on £„. Thus, clearly, \imF3:^x j g(z,w)dp(w) = +00.

D

If I had not promised to construct p concentrated on F, then I would have

simplified the proof of the converse by first replacing F by a set £' with the same

property (ij(£' n D(\, e)) -* 0), containing F in its interior (making use of (2.3)).

This would avoid the separate treatment of capacity zero sets.

If I were willing to assume that £ n W = 1, the proof would be further simplified

by avoiding any need for (2.4). The En would all be compact. There would be no

change in the (B) => (A) portion which, it seems to me, is about as simple as it can

ever get.

Of course any rotation of a Green potential is also a Green potential, so (B)

implies

liminf(l -\z\)u(ze'e) = 0

for any Green potential. That is, the lower limit in an approach to e'e along the

rotate e'6F is zero for any e'e g dU.

4. Comments. The possibility of obtaining similar results for Green potentials of

arbitrary domains depends largely on the validity of an analogue of the lemma.

Assume that U is an open set in R" which is nice enough that its Green function

g(x, y) satisfies \imv^aug(x, y) = 0 for each reí/. Let a be a positive measure

on U, and suppose that its potential u(x) is finite at some point, say u(0) < + 00.

The expression 1 - |z| in the lemma and theorem may be replaced by g(x, 0). The

question then is whether liminfF3x^x. g(x,0)u(x) = 0 for a point x0 G dU. An

examination of the proof of the lemma shows that the definition of S(a) was chosen

only to obtain g(z, a) < C on U\ S(a). In the present generality it is convenient to

take this as the definition: S(a) = [x G U: g(x,a)> C} for some convenient

constant. The validity of the proof of the lemma rests on the fact that there is

another constant C0 such that

(4.1) l/Co<g(x,0)/g(a,0)<Co
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whenever x g S(a) and a is near 3/7. I do not know if this inequality can be shown

for general domains. The necessary properties of hyperbolic capacity extend fairly

routinely to this context.

One could also consider more general kernels, obtaining the associated capacities

and potentials. If the kernel is nice enough, the appropriate generalizations of the

theorem again rest on (4.1). Here is one example: Let k(x, y) = \x — y\~x in R3 with

associated Newtonian capacity and Newtonian potential. Let £ be an unbounded

closed set in R3. Then a necessary and sufficient condition for every potential u(x)

to satisfy

liminf —u(x) = 0
F3x^cc  \X\

is that £ have infinite capacity (equivalently, cap[£ n [x: \x\ > R}] > 8 > 0 for all

R). Here cap£ = l/V and V = inf{//|x - y\~x dp(x)dp(y): supp/i c £, p > 0,

-x(£) = 1}.
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