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ANTISYMMETRY AND THE DIRECT INTEGRAL

DECOMPOSITION OF UNSTARRED OPERATOR ALGEBRAS

WACLAW SZYMANSKI

Abstract. It is shown that the direct integral decomposition of a non-self-adjoint

operator algebra stf has the diagonal j¡ÍC\sí* of this algebra as the algebra of

diagonalizable operators if and only if almost all direct integrands of j/ are

antisymmetric algebras. By using the antisymmetric decomposition a direct integral

model of a commutative, reflexive algebra is obtained.

1. Introduction. The von Neumann reduction theory of H/*-algebras reduces the

problem of investigating these algebras to the study of "the simplest" H/*-algebras,

namely factors. In 1976 Azoff, Fong and Gilfeather [1] created a reduction theory

for unstarred (i.e. non-self-adjoint) operator algebras. They introduced a direct

integral decomposition of such algebras and proved several theorems that connect

properties of a given unstarred operator algebra and of its direct integrands. In

particular, they exhibited a dependence between the certain maximality property of

the underlying diagonal algebra and the irreducibility of almost all direct integrands

of a given algebra [1, Theorem 3.6]. This dependence, again, reduces the study of

some general unstarred algebras to the study of " the simplest" algebras in this case,

namely irreducible ones. But in the non-self-adjoint setting there is no unique

idea—what does "simplest" really mean?

The present paper deals, in §3, with the case where " the simplest" algebras that

occur in the AFG-direct integral decomposition of a given algebra are actually

antisymmetric. §4 gives a model of commutative, reflexive algebras of operators, and

the set of all maximal antisymmetric projections for such algebras is described there

in terms of their direct integral decomposition.

2. Preliminaries. Throughout this paper all Hilbert spaces are separable, all

projections are self-adjoint, and all algebras of operators have unit. SOT denotes the

strong operator topology in the algebra L ( H ) of all linear, bounded operators in the

Hilbert space H.

First the AFG-direct integral decomposition will be recalled. Fix an increasing

sequence Hx c H2 c ■ • • c HK of Hilbert spaces. Assume dim Hn = n for all finite

n and that Hx is spanned by all the remaining H„'s. Let (A,¡ti, {a„}) be a

partitioned measure space, i.e., A is a separable metric space, ju is a regular, Borel,

finite measure on  A  and  [an]  is a Borel partition of A. The direct integral
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3tf'= j® H(X)dp(X) is defined as the Hilbert space consisting of all (equivalence

classes of) functions /: A -* Hx such that f(X) G H(X) = Hn for À g a„ and

/a WfC^)\\2dp(X) < oo. An operator A eL(/) is decomposable if there is a

SOT-measurable function A(-): A -> L(HX) such that A(X) g L(H(X)), A g A,

and Af(X) = A(X)f(X), X G A for all /g^". Such an operator is denoted by

A = j® A(X)dp(X). An operator A G L(Jf ) is diagonalizable if /I is decomposa-

ble and the values of the function A(-) are scalar multiples of the identity I(X) in

L(H(X)) for almost all À. The commutative H/*-algebra D of all diagonalizable

operators is called the diagonal algebra of A. The principal property of this algebra is

that it equals the commutant of the algebra of all decomposable operators. More-

over, the diagonal algebra of A serves as a unitary model of every commutative

H/*-algebra. Namely, to every commutative H/*-algebra ^ c L(H), there corre-

sponds a unique partitioned measure space (A,p, {an}) such that 3% is unitarily

equivalent to the diagonal algebra of A. The basic definitions and properties above

belong to the classical von Neumann reduction theory and can be found in [3]. Now

let (A, jti, {a,,}) be a partitioned measure space with the diagonal algebra D. Let

j/c L(Jif ) be a SOT-closed algebra of decomposable operators, i.e. sea D' (= the

commutant of D). Choose a countable sequence {^4,,} of generators of sé. Since

each An is a decomposable operator, An — j® An(X)dp(X). Choose a Borel repre-

sentative À -* An(X) of the corresponding classes of functions. Let sé(X) be the

SOT-closed algebra generated by {A„(X)}. Denote sé- /Ae sé(X)dp(X). This de-

composition will be called the AFG-(direct integral) decomposition of the algebra

with respect to D. The basic reference for the non-self-adjoint reduction theory is [1].

3. The role of antisymmetric algebras in the AFG-decomposition. Recall that an

algebra sea L(H) is called antisymmetric if it contains no self-adjoint operators

except scalar multiples of the identity. If sé is SOT-closed, \hense is antisymmetric

if and only if the only projections in sé are 0 or /= the identity. The basic

references for the antisymmetry in operator algebras are [4, 6]. Let (A, p, {an}) be a

partitioned measure space and let D be the diagonal algebra of A. A simple

observation that the projections En = /Ae x„ (a)/(A)é/¡u(a) are diagonalizable and

that they are mutually orthogonal allows one to considerably reduce the problem of

study of the general direct integral. The following proposition is certainly well

known. It is included here for the sake of completeness.

3.1. Proposition. Let yf= j® H(X)dp(X). Suppose that see L(Jif) is an alge-

bra such that D Cj/c D'. Then:

(i) Jif is unitarily equivalent to the Hilbert space  @x=xL2H(on,p).

(ii) Each decomposable operator in L(J^) is unitarily equivalent to the direct sum of

decomposable operators in L2H(an, p).

(iii) sé = 000 ,s/r.

Here L2H(an,p)= {/: a,,-»//,,:/ is measurable and /„ ||/(À)||2iiii(À) < oo}

and s/H consists of restrictions of operators in sé to the space En3tf'. The proof of

(i) and (ii) is clear. To see (iii) it is enough to notice that E  g sen sé' for each n.
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The following theorem is the first main result of this paper. It explains the role of

antisymmetric algebras in the AFG-decomposition.

3.2. Theorem. Suppose D c L(H) is a commutative W*-algebra. Consider D to be

the diagonal algebra of a partitioned measure space (A, p, {on}) in Ji?=

/A® H(X)dp(X). Let sea L(Jf) be a SOT-closed algebra. Suppose D c see D'. Let

sé~ J® sé(X)dp(X) be the AFG-decomposition of sé with respect to D. Then

D = sen sé* if and only if almost all sé(X) are antisymmetric.

Proof. Assume first that almost all sé(X) are antisymmetric. Clearly, sé* = {A*:

A g sé}. Since D c sé by the assumption, and since D is a W/*-algebra, it follows

that D c sen sé*. The algebra sensé* is a W/*-algebra generated by self-adjoint

elements of sé. Take 5 = S* g sé. Since sé consists of decomposable operators

(sécz £>'), S is decomposable. Thus S = /A® S(X)dp(X). Almost all S(X) are

self-adjoint operators in H(X). Moreover, S(X) ^sé(X) for almost all A by Prop-

osition 3.3 of [1]. Since almost all sé(X) are assumed to be antisymmetric, 5(A) are

scalar multiples of the identities, i.e., there are c(A) g R such that S(X) = c(X)I(X)

for almost all A. The function A —> c(A) is an Lx(p)-function. Therefore S is a

diagonalizable operator. Thus all the generators of the H/*-algebra sen sé* belong

to D. Hence sén se* c D.

Now assume D = sense*. Suppose additionally that all the H(X) are equal, i.e.

H(X) = K for all A. Once the assertion of the theorem is proved for this case,

Proposition 3.1 extends it immediately to the general case. Define tj = {(A, Q) G A

X ball L(K): Q is a projection, Q # 0, Q * I, Q g sé(X)). tj is a Borel relation in

A X ball L(K), where ball L(K) is the unit ball in L(K) equipped with SOT. The

domain a of tj is the set of all A g A such that sé(X) contains a nontrivial

projection. This amounts to saying that a = {A g A: sé(X) is not antisymmetric},

by the remark after the definition of an antisymmetric algebra. By the Principle of

Measurable Choice (see e.g. [1, Proposition 2.1]), a is measurable and there is a

Borel function P(-) whose domain almost coincides with a and whose graph is

contained in rj. Define the function P( X) = P (A) for A in the domain of P() and

P(X) — 0 for A G A not in the domain of P(-). Then P(-) is a SOT-measurable

function and sup{||P(A)||: XeA}<l. Let P = /A® P(X)dp(X). Then P is a

decomposable projection and P belongs to sé by Proposition 3.3 of [1], because

P(X) c-sé(X) for almost all A. Since sen sé* = D, it follows that all the projec-

tions in sé are diagonalizable. Therefore P(X) = 0 or P(X) = I for almost all A.

This proves that p(a) = 0. Thus almost all sé(X) are antisymmetric.    Q.E.D.

4. Direct integral and maximal antisymmetric projections for reflexive algebras. In

the previous section the "global" antisymmetry was considered. Now the AFG-

decomposition will be employed to get a direct integral decomposition for commuta-

tive, reflexive algebras, which allows us to determine completely the set of all

maximal antisymmetric projections for such algebras.

The concept of an antisymmetric projection was introduced in [4] as a noncom-

mutative generalization of the notion of a set of antisymmetry for function algebras.

Let  sec L(H) be an algebra of operators. A projection  Ecsé'   is called an
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antisymmetric projection for sé if the algebra séE = {^4|EH: A G sé) c L(EH) is

antisymmetric. An antisymmetric projection for sé is called a maximal antisymmet-

ric projection for sé if it is a maximal (in the usual ordering of projections) element

in the family of all antisymmetric projections for sé. The set of all maximal

antisymmetric projections for sé is denoted by Ji(sé). The elements of Jt(sé) are

mutually orthogonal. The projection / — E{ F: F g J¿(sé)} is called the pseudo-

symmetric projection for sé. The reader is referred to [4, 6] for details concerning

antisymmetric projections. In particular, the following theorem was proved in [4].

4.1. Theorem ([4, Corollary 2]). If sec L(H) is a commutative, reflexive

algebra, then sé admits the antisymmetric decomposition, i.e., Jt'(sé) c sense', i.e.

4.2. sé= sé0 © ( © ( séF: F g Jt(sé)}), where sé0 is the pseudosymmetric part of

sé.

Let sec L(H) be an algebra. A projection P g sé is called minimal in sé if for

each projection Q G sé, Q < P either Q = 0 or Q = P. It can be easily deduced

from Proposition 2.1 of [5] that

4.3. If see L(H) is a commutative, reflexive algebra, then Jt(sé) equals the set

of all minimal projections in sé. Let see L(H) be a commutative, reflexive algebra.

All the projections in sé are, clearly, in the commutative W/*-algebra sense*.

Therefore, minimal projections in sé are exactly minimal projections in sensé*.

Thus, by 4.3, the antisymmetric decomposition 4.2 depends only upon the algebra

sen sé*, not on the algebra sé itself. This proves the following:

4.4. Proposition. Suppose sé, 3ft c L(H) are two reflexive, commutative alge-

bras. If sense* = 33 n 3S*, then Jt(sé) = Jt(3S) = Jt'(sensé*) = the set of all

minimal projections in sensé*.

Notice that the last two equalities are a consequence of the reflexivity of the von

Neumann algebra sensé*.

Now everything is prepared to give the description of maximal antisymmetric

projections for commutative, reflexive algebras.

4.5. Theorem. Let sec L(H) be a commutative, reflexive algebra. Put D = sen

sé*. Let (A,(i, {<f„}) be the partitioned measure space such that D is unitarily

equivalent to the diagonal algebra of A. H is unitarily equivalent to j® H(X) dp(X).

Then:

(i) sé is unitarily equivalent to a commutative, reflexive algebra of decomposable

operators.

(ii) There is a measurable partition {con: n = 0,1,2,...} of A such that each to,, is

an atom of the measure p for n = 1,2,... and co0 = A — U^L x w„.

(iii) The correspondence w„ -» Fn = j® xu (A)/(A) dp(X) for n = 1,2,... is one-

to-one and it maps the set of atoms of the measure p onto the set of all maximal

antisymmetric projections for sé.

(iv) The projection F0 = f® xw (X)I(X)dp(X) is the pseudosymmetric projection for

sé.

(v) sé=séFo® (®x=xséF).
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Proof. Let the algebra D be treated as the algebra of all diagonalizable operators

and let sé be considered as unitarily embedded into L(j® H(X) dp(X)). Since sé is

commutative, see sé'. Therefore D c see se' c D'. Thus sé consists of decom-

posable operators. Clearly, the reflexivity is preserved by unitary isomorphisms. This

proves (i). Now look for the set of minimal projections in D, which, by 4.4, coincides

with Jt(sé). If P G D is a projection, then it is diagonalizable. Thus there is a

measurable set w c A such that P = /Ae xu(^)I(X)dp(X). It follows easily from

the properties of direct integrals that P is minimal in D if and only if u is an atom

of /x. Since Jt(sé) c D, by 4.3, to each F G Jt(sé) there corresponds a uniquely

determined (up to measure zero) measurable set w c A, which is an atom of the

measure p, such that F = j® xu(X)I(X)dp(X). Since elements of Jt(sé) are

mutually orthogonal projections [4, Proposition 3], the corresponding atoms have to

be pairwise disjoint (up to measure zero). But there can be at most countably many

of these atoms, because p is a finite measure. This, together with 4.1, proves the

remaining assertions of the theorem.    Q.E.D.

This theorem can be treated as a noncommutative Bishop decomposition theorem

for commutative, reflexive algebras. It has to be pointed out that Theorem 4.5 as

well as all the considerations in this section have a noncommutative character,

because nothing is assumed about the commutativity of the W7*-algebra generated

by sé. The reader may find more comments on this in [4, 6].

A remarkable similarity of Theorem 4.5 to Theorem 3.1 of [2] is apparent here.

But it is easily seen that the situation in [2] is much more particular than the one

treated in Theorem 4.5. The great difference between these two situations was

already explained in detail in [4]. Nevertheless, a theorem like 4.5 cannot be proved

without the direct integral theory. Thus, the similarity mentioned above is, clearly,

mostly a matter of form.
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