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EXTENSION OF A THEOREM OF BAAYEN
AND HELMBERG ON MONOTHETIC GROUPS

D. L. ARMACOST

ABSTRACT. Let G and K be compact monothetic groups and let <p be a

continuous homomorphism from G onto K. If fc is a generator of K, must

there exist a generator g of G such that tp(o) = fc? A useful theorem of Baayen

and Helmberg provides an affirmative answer if K is the circle T. We show that

the answer remains affirmative as long as K is metrizable. We also provide an

example to show that the answer may be negative for nonmetrizable K.

A Hausdorff topological group G is said to be monothetic if and only if G contains

an element which generates a dense subgroup of G. Such an element is called a

generator of G. A monothetic group is automatically abelian, and a classical result

of Weil asserts that a locally compact monothetic group must either be topologically

isomorphic to the group of integers with the discrete topology or else must be

compact (see §§9.1 and 9.2 of [5]). The multiplicative group T of all complex

numbers of modulus 1, when given its usual topology, is a compact monothetic

group; indeed, it is easily seen that if 8 is a real number, exv(i9) is a generator of

T if and only if 8 is irrational. Now let G be a compact monothetic group and let ~¡

be a continuous homomorphism from G onto T. It is clear that if x is a generator

of G, then 7(2:) is a generator of T. The question naturally arises: If exp(i9) is

a generator of T, must there exist a generator x of G such that 'y(x) = exp(i9)f

This question was answered in the affirmative in an important and useful result

of Baayen and Helmberg (see Lemma 1 of [3]; simplified proofs may be found in

[1], Theorem 5.11 of [2], and Lemma 4.1 of [6]). It is the purpose of this note to

investigate how far this result may be generalized. We shall prove the following

theorem, already announced in §5.30 of [2]:

THEOREM. Let G and K be compact monothetic groups, and let K be metriz-

able. Let <j) be a continuous homomorphism from G onto K. Then ifk is a generator

of K there exists a generator g of G such that (f>(g) — k.

We shall also give an example to show that the conclusion may fail if K is not

metrizable.

In our proof (which, incidentally, does not assume the Baayen-Helmberg result)

we shall employ some of the simpler aspects of Pontryagin's duality theory for Haus-

dorff locally compact abelian (LCA) groups as presented, say, in [5]. In our case

we shall be dealing, however, only with compact and discrete groups. Fundamental

is the fact that a compact LCA group G is monothetic if and only if its (discrete)

dual G is isomorphic to a subgroup of T¿, by which we mean T with the discrete

topology (see §24.32 of [5]).   Also important is the fact that an element x of an
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LCA group G is a generator of G if and only if 7(1) / 1 for all 7 7^ 1 in G; i.e.,

if and only if x, when considered as a character on G, is one-one (see §25.11 of

[5]). We shall also make use of the adjoint <p* of a continuous homomorphism cp

between LCA groups (see §§24.37-24.41 of [5]). We begin our proof by establishing

three purely algebraic results. The reader may consult [4] and Appendix A of [5] as

general references for abelian group theory. If A and B are subgroups of an abelian

group C, then we write C — A © B to indicate that C is the direct sum of A and

B.

LEMMA 1. Let A and B be finite or countably infinite isomorphic subgroups of

Td- Let C and D be subgroups ofT¿ such that A © C = B © D = Ta- Then C and

D are isomorphic.

PROOF. Since Td is divisible, the same is true of A, B, C and D. If we apply

the structure theorem for divisible groups (see A. 14 of [5]) to all five groups under

consideration, a simple cardinality argument (we omit the details) reveals that C

and D have the same p-ranks and torsion-free rank and are therefore isomorphic.

(Note that the result may fail if A is uncountable.)

LEMMA 2. Let A be a finite or countably infinite subgroup of Td- If ip is a

monomorphism from A into Td, then ip can be extended to an isomorphism ip# of

Td.

PROOF. Since Td is divisible, we may find a minimal divisible subgroup A of Td

containing A (see Theorem 24.4 of [4]). Since A has the same rank as A (p. 107 of

[4]), A is either trivial or countably infinite. By Theorem 21.1 of [4] we may extend

ip: A —> Td to a homomorphism ip: A —> Td- It follows fromLemmas 24.2 and 24.3

of [4] that ip is also a monomorphism. Since both A and ip(A) are divisible there

exist subgroups C and D of Td such that A © C — rp(A) © D = Td (see Theorem

21.2 of [4]). Since A is at most countably infinite and A = 4>(A), it follows from

Lemma 1 that C — D. Let / be any isomorphism from C onto D. Then define

ip&:Td —► Td by this rule: If t G Td, write t — ä + c uniquely for ä G A and c G C

and set ip^(t) — îp(â) + f(c). It is easy to verify that t/># is an isomorphism from

Td onto Td which extends ip.

LEMMA 3. Let B be a finite or countably infinite abelian group. Suppose that

/1 and fi are monomorphisms from B into Td. Then there exists an isomorphism

g of Td such that fa — g o /i.

PROOF. Set A — fi(B) and define a mapping tp:A —> Td by this rule: For

a G A, ip(a) = /2(b) where b is the unique element of B such that a — fi(b). It

is immediately verified that ip is a monomorphism. Now let g be the isomorphism

tp# guaranteed to exist by Lemma 2. Then for each b G B we have g(fi(b)) —

W/iW) = h(b); i.e., go/t = fa, as desired.
Now we proceed with the proof of the Theorem. As Kuipers and Niederreiter

point out in their simplification of the proof of Baayen and Helmberg's result, we

may assume that G — (Td)~ (This follows immediately from the fact that any

compact monothetic group is a quotient of (Tdf by a closed subgroup, since G

is a subgroup of Td-) Suppose, then, that (p is a continuous homomorphism from

(TdÇonto K, and let /c be a generator of K. We seek a generator g of (Td)~(that
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is, a one-one character g of Td) such that cp(g) = k. Let <p*: K —> Td be the adjoint

of (p. (Here we have identified ((T<¿)~)~with T¿.) By §24.41 of [5] cp* is one-one.

Moreover, the generator fc of K may be regarded as a monomorphism from K into

Td- The metrizability condition on K entails that K is finite or countably infinite

(§24.15 of [5]). Now set B = K, f\ = cp* and fa = fc in Lemma 3. We conclude that
there exists an isomorphism g:Td -* Td such that k = gocp*. Since g is one-one, it

is a generator of (T<j)~ and we need only verify that <p(g) = fc. This will be done

if we show that (p(g) and fc agree as characters on K. To this end, let 7 G K. We

have

(<t>(g)){i) = i(4>(g)) = (<f>*d))(g) = 9(^(1)) = (9 ° <t>*)d) = fcfr),

so that 0(g) = fc. (A quicker, if perhaps less perspicuous, way to see this is by using

§24.41(a) of [5]: We have <p(g) = ((p*)*(g) = g o 0* = fc.) This completes the proof

of the Theorem.

We now show that the conclusion of the Theorem may fail if K is not metrizable.

Let D be a proper subgroup of Td such that D = Td- (That such a D exists may

be seen by recalling that Td is a direct sum of quasicyclic groups, one for each

prime p, and continuum many copies of the group Q of rational numbers; just

remove one of the Q's to obtain D.) Let i: D —► Td be the injection and let /

be any isomorphism from D onto Td. Then D is compact and monothetic and i*

is a continuous homomorphism from (T¿) onto D. Now / may be regarded as a

generator of D. We claim, however, that there is no generator g of (T<¿)~such that

l*(ff) = /• For assume that such a r; exists. Then g is a one-one character on Td- To

say that t*(g) = f is to say that f — goi. But since i is not surjective, there exists

t G Td such that t £ i(D). Now g(t) G Td and f:D —> T¿ is surjective, so there

exists d G D such that f(d) — g(t). But then g(t) = f(d) = (g o i)(d) — g(i(d)).
Since g is one-one, we have t — i(d), contradicting the fact that t £ i(D).
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