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DECOMPOSITION THEOREMS
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ABSTRACT. Let F —> E —* B be a fibration of simply connected rational

spaces with finite rational betti numbers. Denote the connecting homomor-

phism of the fibration by ¿?# and the Hurewicz map of the fibre F by h. Then,

it is shown that there is a decomposition F ~ 7 x K where K is the product

of rational Eilenberg-Mac Lane spaces contained in QB maximal with respect

to the conditions: ir,(K) n Kerd# = 0 and d#(ir,(K)) n Kerh = 0.

This decomposition is obtained using Sullivan's theory of minimal models.

Applications are given of the main theorem and a dual result is proved for

rational cofibrations.

Conventions and notation. Throughout this note we shall assume that all

spaces under consideration are of the homotopy type of simply connected, ratio-

nal CW complexes with finite rational betti numbers. Such spaces, for example,

are obtained as the rationalizations of simply connected CW complexes of finite

type. (See [GM].) For X as above, we shall write (unambiguously) H*(X),H,(X)

and tt*(X) for the rational cohomology algebra, rational homology coalgebra and

rational homotopy Whitehead algebra respectively.

1. Introduction. In studying the homogeneous space fibration

G/K ^BK^BG

Cartan [C] exploited the interplay between the connecting homomorphism in the

homotopy sequence of the fibration and the Hurewicz map of G/K to compute

H*(G/K;Ii). (For a rational homotopy version of Cartan's result, see [HT, §4].) In

his analysis, Cartan developed a differential graded algebra technique which inspired

Sullivan's theory of minimal models. What this suggests is that a proper setting

for a more general study of the relationship between the connecting homomorphism

of a fibration and the Hurewicz map of the fibre may be found in the framework

of rational homotopy theory. In this paper we will make some initial attempts

to justify this belief. In particular, we use the relationship between the Hurewicz

map and the connecting homomorphisms of a fibration and a cofibration to obtain

product and wedge decompositions of the fibre and cofibre respectively.

In the period between Cartan's result and the development of minimal model

theory, the relationship described above found much application. In particular,

the work of Gottlieb (e.g., [Gl, G2]) contains many interesting results in this

direction. Also, it was at this time that the powerful effect of the connecting

homomorphism on the homotopy type of the fibre became better understood. The

following result, originally discovered by Haslam [H] in connection with work on
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evaluation subgroups, exemplifies this effect.  (We remind the reader to recall our

conventions!)

THEOREM A [H, HI, FT]. // F -> E A B is a fibration and <9# is surjective,

then F has the homotopy type of a product of Eilenberg-Mac Lane spaces.

REMARK. (1) We have stated Theorem A in this form because we wish to

emphasize the condition on the connecting homomorphism d# : 7r,+i(5) —* irm(F).

The exactness of the homotopy sequence of a fibration implies, however, that we

could have imposed the equivalent condition that p# : ir*(E) —> tí»(B) be injective.

(2) Note that the description of F implies that the Hurewicz map h: tt*(F) —>

H+(F) is injective. Compare this to Theorem 1 below.

The proof of Theorem A is short and provides many of the elements used in later

sections.

PROOF OF THEOREM A. The dual Puppe sequence of the fibration provides a

map d: QB —► F inducing d# via the identification n*+i(B) = tt*(QB). Now, with

respect to our conventions, QB has the homotopy type of a product of Eilenberg-

Mac Lane spaces. Therefore, we may choose a subproduct K C QB such that

the restriction of d to K induces isomorphisms in homotopy. Hence F has the

homotopy type of K.    Q.E.D.
The role of Eckmann-Hilton duality in topology provides a secondary theme

for this paper. There is an interaction between the connecting homomorphism in

the homology sequence of a cofibration and the Hurewicz map of the cofibre which

dualizes the situation alluded to earlier for the case of a fibration. Before we discuss

the effects of these dual relationships, we note that Theorem A (and its proof) may

be dualized to yield,

THEOREM B [FT]. // X —>Y —> C is a cofibration and d» is injective, then C

has the homotopy type of a wedge of spheres.

REMARK. (1) The condition on dt: H++i(C) -* H*+l(EX) = H*(X) may be
replaced by the equivalent condition that /, : H*(X) —► H,(Y) be surjective.

(2) Note that the Hurewicz map h: rt*(C) —► H»(C) is surjective; compare with

Theorem 2 below.

(3) C has the homotopy type of the maximal subwedge of EX ~ \f STj such that

d* is surjective.

We now come to the decomposition results which form the basis of this investi-

gation. Note the heavy dependence on the d#-h and dm-h interaction. In order to

understand the statements of the theorems, we remind the reader that, for any X

subject to our conventions, QX has the type of a product of Eilenberg-Mac Lane

spaces and EX has the type of a wedge of spheres. Also, we denote the image of

the Hurewicz map h: tt»(X) -* H,(X) by S(X).

THEOREM 1.   If F —> E —> B is a fibre sequence, then

F~7xK

where K is the subproduct ofQB maximal with respect to the conditions, ir*(K) fl

Ker<9#=0 and d#(ir.{K)) HKer/i = 0.

THEOREM 2.   If X —► Y" —> C is a cofibre sequence, then

C-CvS
where S is the maximal subwedge of'EX such that d*\s(C) l's surjective.
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REMARK. Theorem 1 may be used to translate conditions on F into information

about the evaluation subgroups of F (see [Gl] for a definition). For example, if

all cup products in H* (F) vanish and F does not have the homotopy type of an

odd-dimensional sphere, then it is clear that K must be trivial. (Compare with

Theorem 5-2 of [Gl].) In turn, because this holds for any fibration with fibre F,

we see that the evaluation subgroup of F must be contained in the kernel of the

Hurewicz map. This result is very much in the spirit of [Gl, G2]. As an example

of a space satisfying the conditions above (and which is not a wedge of spheres)

take F = (Sn\/Sn)Uae3n~2, where a represents the Whitehead product [ii, [¿1,22]]

and ii,¿a represent the respective inclusions of Sn in SnVSn. We hope to consider

these types of applications further, as well as dual results, in a later paper.

As indicated by our earlier remarks, it is our point of view that Theorems 1

and 2 have their most natural formulations and proofs in the framework of rational

homotopy theory. An additional advantage of this algebraic setting is that the

duality between Theorems 1 and 2 becomes quite obvious. For these reasons the

remainder of the paper is cast in the language of minimal models. We begin by

briefly reviewing this theory.

2. Minimal models. Recall that L(V) denotes the commutative graded alge-

bra freely generated by the vector space V. That is, L(V) is the tensor product

of a polynomial algebra on even-dimensional generators and an exterior algebra on

odd-dimensional generators. If M = L(V) is provided with a graded derivation d

of degree 1 satisfying d2 = 0 and d(M+) C M+ • M+, then (M,d) is said to be a

minimal differential graded algebra (DGA). To any space X, there is associated a

minimal DGA model M(X) which describes the homotopy type of X. (We remind

the reader to recall our conventions.) In particular, there is a natural isomorphism

H*(M(X)) = H*(X).

Furthermore, the indécomposables of M(X), QM(X) = M(X)+/M(X)+ -M(X)+,
are dual to the homotopy groups of X; that is,

Ql(M(X))=Rom(TTlX,Q).

As shorthand, we write QX for QM(X). Finally, we note that any map /: X —> Y

induces a DGA map F: M(Y) —> M(X) which is unique up to DGA-homotopy.

For details see [GM, H2 or H3] for example.

The dual approach to rational homotopy theory is via differential graded Lie

algebras (DGLA). Let F[V] denote the free graded Lie algebra on the vector space

V. If L = F[V] is given a graded derivation d of degree -1 satisfying d2 = 0 and

d(C) C [£,£], then (C,d) is called a minimal DGLA. A space X has a minimal

DGLA model £(X) which describes its homotopy type; in particular,

HZ(X) = 7t<(QX)    and   QZ(X) S s~xHt(X).

Here QZ(X) denotes the indécomposables of Z(X), L(X)/[t(X),Z(X)}. A map
/: X -> Y induces a DGLA map F: £(X) -* Z(Y) which is unique up to DGLA

homotopy. The DGLA approach was introduced in [Q] and developed in [N and

BL]. The most complete treatment, however, may be found in the recent book of

Tanre [T].
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Each of the approaches above yields a description of the Hurewicz homomor-

phism:

(DGA) tí: HlM(X) -» ZiM(X) C Ml(X) -* QiM(X),

(DGLA)      h: Hi-i£(X) -» Z^iC(X) c -lVi(X) - Qd-i{X) = a-lHi(X)

where the first map in each sequence is a chosen splitting and the last is projec-

tive onto indécomposables. The identifications H%—i£(X) = 7r¿(X), QlM(X) =

Hom(7r¿X, Q) complete the description. An alternative approach is given by ob-

serving that

M(X) -» QM(X)    and    £(X) -» QL(X)

are (co)chain maps. Hence, there are induced maps

H*M(X) -» H*QM(X) £ QM(X),        Ht(X) -> HQC(X) S Q£(X).

The existence of the indicated isomorphisms is equivalent to the minimality of

M(X) and Z(X) respectively. We will use the following notation:

R(X) = Image(Ji'),        S(X) = Image(/i).

Finally, we recall the dual notions of operators and cooperators (see [Hi]). If

F —► E —> B is a fibration, then the homotopy lifting property provides an operation

of QB on F, c: F x QB -* F. For a G tt„F, /x G 7rn+1.B S 7rn(f2ß), c#(a,p) =

a + d#p where 3# is the connecting homomorphism. The induced map of minimal

models C: M(F) —> M(F)(g>M(fi.B) induces a map of indécomposables QC: QF —>
QF(BQ(QB) which takes the form QC(x) = (x,d#x), where <9# is the dual of <9#.

To a cofibration X —► F —► C there is associated a cooperation c : C —► C V EX.

The induced map on homology is given by c»(x) = (x, <9»x), where <9» is the

connecting homomorphism. This is, of course, QC, the map induced on indé-

composables by the DGLA map C: Z(C) —► Z(C)\\Z(EX) corresponding to
c. The symbol "JJ" denotes the free Lie product. (It is not hard to show that

£(CVEX)^£(C)TJ£(EX).)

3. Statements, proofs and corollaries. In this section, we first state the

minimal model version of Theorem 1 and prove some corollaries of it. The dual sit-

uation is then considered. Finally, minimal model proofs of the main decomposition

results are given.

THEOREM 1'. If F ^ E A B is a fibre sequence, then the DGA model of F
has a decomposition

M(F)^(L(V'),Q)®(L(V"),d)

where V = R(F)/R(F) n ImQi. Consequently,

H*(F) = L(V) ® H*(L(V"),d).

REMARK. Recall that Qi denotes the induced map on indécomposables QE —►

QF.
COROLLARY a. If dim(R2n(F)/R2n(F) nlmQi) > 1, then H2kn(F) # 0 for

allk > 1.

PROOF. The hypothesis ensures that there exists a nontrivial x G V of even

degree. Hence, x is a polynomial generator of L(V), so xk ^ 0 for all k > 1. By

Theorem 1' we are done.    Q.E.D.
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COROLLARY b. If H2(E) -> H2(F) is not surjective, then H2k(F) ^ 0 for all

fc>l.

PROOF. If X is 1-connected, then the inductive construction of the minimal

model M(X) shows that Q*X = 0 and Q2X = H2(X). Thus, R2(F) = Q2F
and the hypothesis is equivalent to the nonsurjectivity of Qi: Q2E —► Q2F. By

Corollary a we are done.    Q.E.D.

REMARK. Corollary b is proven in [GLSW] by entirely different methods and

is listed as Theorem 2 in that work. Furthermore, results of this nature were

obtained by Gottlieb in his study of the evaluation map. In particular, Corollary 3

and Theorems 4 and 5 of [G2] yield an alternative proof of Corollary b.

THEOREM 2'. If X ^ Y ^ C is a cofibre sequence, then the DGLA model of

C has a decomposition,

C(C) = (F[V'},0)l[(F[V"},d)

where V = S(C)/S(C) n lmjt. Consequently,

7rt(QC) = F[V']l[(F[V"},d).

REMARK. Note the duality between Theorems 1' and 2'. Specifically, note

that the tensor product ® and the free Lie product ]J are the coproducts in the

categories DGA and DGLA respectively.

The next two results exemplify the heuristic nature of Eckmann-Hilton duality.

Although they are formally similar to Corollaries a and b, the dimension restriction

of Corollary a does not dualize because the attributes of free graded Lie algebras

differ significantly from those of free graded commutative algebras.

Corollary c. Ifdim(Sn(C)/Sn(C) nlmj.) > 2, then Ttk{n_i)+i(C) ̂  0 for
all fc > 1.

PROOF. The hypothesis ensures that the free graded Lie algebra F[V] has at

least two generators. Consequently, there exists a nontrivial basic product in the

degrees indicated (see [W]).    Q.E.D.

COROLLARY d.   //dim(Coker(j»)3) > 2, then ir2k+i(C) ^ 0 for all k > 1.

PROOF. Because the differential of £(C) is decomposable, the indecomposable

space Q2¿(C) = s~1H3(C) consists of cycles. Hence 53(C) = s~1H3(C) and

Corollary c then applies.    Q.E.D.
For the proofs of Theorems 1' and 2' we recall two facts which were used in

§1. If X = QY, then Hopfs Theorem implies that X has the homotopy type of

a product of Eilenberg-Mac Lane spaces. Hence, the differential dx is trivial and

M(X) = H*(X) = L(Hom(7T»X, Q)). If X = EY, then X has the homotopy type
of a wedge of spheres. Hence, the DGLA differential dx is trivial and £(X) =

7r„(fiX) S F[3-1#.(X)] by the Bott-Samelson Theorem.

PROOF OF THEOREM 1'. From the definition of V, we see that the restriction

of d& : QF —> Q(QB) to V is injective. Take a graded vector space splitting of

d#\v and extend it freely to a DGA map

A: M(QB) = (L(QQB),0) - (L(V'),0).
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Here, we have used the isomorphism, QQB = Hom(7r*(f2B),Q) together with the

remarks preceding the proof. Those remarks also allow us to represent the DGA

(L(V'),0) as a product of Eilenberg-Mac Lane spaces K. The inclusion (L(V'),0) —►

M(F) then is represented by a map a: F —> K. Let 7 denote the homotopy fibre

of a and let ß: M(F) —► M(7) denote the induced map.

Note that the definition of V implies that a#: tt*(F) —> tt»(ä") —

Hom(V, Q) is surjective. By the exactness of the homotopy sequence of the fi-

bration 7 —* F —* K we then have direct sum decompositions,

n,(F)^rt,(7)®TT,(K),        QF^Q7®V.

Now, the composition (ß®A)C: M(F) -» M(F)®M(QB) -» M(7)®(L(V'),0)
induces the map on indécomposables,

(Qß®QA)QC:QF^Q7®V.

The decomposition of QF given above, the description of QC given in §2 and the

definitions ofQß, QA clearly imply that (Qß®QA)QC is an isomorphism. Because

minimal DGA's are freely generated by their indécomposables, we then obtain the

desired isomorphism,

M(F) = (L(V'),0)®M(7).   Q.E.D.

Since the proof of Theorem 2' is dual to that of Theorem 1', we suppress some

of the details.

PROOF OF THEOREM 2'. A splitting of the injection V -* H*(EX) induces

£(EX) —» (^[V'], 0) using the fact that d^x = 0. Let S denote a wedge of spheres

which represents (F[V'],0) and let S —> C represent the inclusion (.F[V'],0) —>

£(C). Denote the homotopy cofibre of S —> C by C. Because V —* H»(C) is

injective, the exactness of the homology sequence of S —* C —> C gives a graded

vector space decomposition,

H»(C)^H,(C)®V.

Let £(C) —> £(C) model C —> C and consider the composition,

£(C7) £ £(C7)]j£(EX) -» £(C)U(F[V'],0).

Again, the induced map on indécomposables (i.e., s~xH*( )) is easily seen to be

an isomorphism. Since minimal DGLA's are freely generated by their indécompos-

ables, we obtain the isomorphism

£(C)-(F[no)L[£(C).   Q.E.D.
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4. Appendix. The proof of Theorem 1' shows that the restriction of d* to

L(V) is injective. Subsequently, Felix and Thomas have observed that, indeed, the

following holds.
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COROLLARY e.   L(V) = Im(d* : H*(F) -» H*(QB)).

The proof of this result derives from the work of Felix and Thomas on the

operation of rational holonomy (which in one form is given by)

H.(QB)®H*(F)-*H*(F).

The reader is referred to their paper, Sur l'opération d'holonomie rationelle, which

is to appear in the Lecture Notes in Mathematics, Stockholm, 1983, for details. See

especially §3.2.

Corollary e follows from the fact that d* is a map of i?,(fi.B)-modules, so Im<9*

is an Ht (nß)-submodule of H*(QB). The module structure here derives from the

path fibration of B. The following Lemma, together with Theorem 1', complete

the proof.

LEMMA. Every subalgebra M of H*(QB) which is an H*(QB)-module is of the

form L(W), where W is a vector space of indécomposables of H*(QB).

PROOF (FELIX—PRIVATE COMMUNICATION). For convenience we write M(B)

= (L(X),d) and H*(QB) = M(QB) = (L(X),0), where X is X shifted down one

degree.

Let a G M C L(X) and write

a = ^Ja¿x(¿, 1) • ■ -x(i,pi),        ax G Q, p = inf(p¿).

iei

By duality, we may choose u(i,j) G Yúm(H*(QB)) = t¡„(QB) with

(x(i,j), su(i,j)) = 1

where s = suspension by one degree and s x = x.

Now, each u(i,j) acts as a derivation so that the element of H*(QB),

(u(i, 1) ■ • ■ u(i, j) ■ • ■ u(i, pi)) = u acts as (see Felix-Thomas),

u-a = (u(i,l) ■ ■ ■ u(i,j) ■ ■ ■ u(i,pi-i)) ■ (u(i,pi) -a)

= äix(i,j) + p(i,j)

where a¿ G Q and p(i,j) G L(X)+ ■ L(X)+. (For example,

U.U2 • (¿1X3X3) = Ui(0 ± Xi • 1 ■ X3 + 0) = Wi(±XiX3)

= ±l-x3 + 0 = ±x3.)

But u ■ a G M, so x(i,j) — v(i,j) G M where v(i,j) = —(l/äi)p(i,j).

Let y(i,j) = x(i,j) —v(i,j) be a new set of generators for M(QB). Then replace

x(i,j) in the expression for a by y(i,j) + v(i,j). We obtain a = à + ß where à is

a sum of products of the indécomposables {y} and ß is a sum of words of length

>P+L

We may continue this process inductively until the lengths of words in ß exceed

degree of a. Then we must have ß = 0. Hence, a is obtained as a sum of products

of indécomposables of M(QB).    Q.E.D.
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Felix and Thomas apply Corollary e to prove the interesting result (Theorem 4.6

in their work),

THEOREM FT.   //F —> E —* B is a fibration of 1-connected spaces and H*(F)

is a finitely generated H*(QB)-module, then the following are equivalent:

1. H*(F) is nilpotent (i.e., there exists an n > 0 such that (H+)n = 0).

2. The composition hd# : Trn+i(B) —► Hn(F) is trivial above a certain dimension

and for each even n.

I would like to thank Yves Felix for explaining Corollary e to me as well as

bringing to my attention the beautiful application of Theorem 1', Theorem FT.
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