AN OPEN BOOK DECOMPOSITION FOR $RP^2 \times S^1$

ERIC KLASSEN

ABSTRACT. In this paper an open book decomposition for $RP^2 \times S^1$ is exhibited.

In a recent paper [1], Berstein and Edmonds prove the existence of open book decompositions for compact, nonorientable 3-manifolds. Their method is to pull back an open book decomposition of $RP^2 \times S^1$ via a branched cover. Their demonstration that $RP^2 \times S^1$ has such a decomposition is algebraic; they define a homomorphism $\pi_1(RP^2 \times S^1\text{-knot}) \to Z$ and apply Stallings' fibering theorem [2]. In this paper I explicitly exhibit an open book decomposition of $RP^2 \times S^1$ via a map $RP^2 \times S^1$ -same knot $\to S^1$, inducing the same homomorphism on π_1 .

Let $D^2 = \{z \in C: |z| \le 1\}$. Think of RP^2 as D^2 with antipodal points of the boundary circle identified. Define $\overline{\varphi}$: $D^2 \to D^2$ by $\overline{\varphi}(z) = -z$. Note that $\overline{\varphi}$ induces a map φ : $RP^2 \to RP^2$ which is isotopic to the identity (just rotate through 180°). Thus we may take $D^2 \times I$ with the identifications

$$D^2 \times I \rightarrow RP^2 \times I \rightarrow RP^2 \times I/(x,0) \sim (\varphi(x),1)$$

as our model of $RP^2 \times S^1$. The image of $\{-\frac{1}{2}\} \times I \cup \{\frac{1}{2}\} \times I$ is a circle C in $RP^2 \times S^1$.

Let
$$p: (D^2 - \{-\frac{1}{2}, \frac{1}{2}\}) \times I \to S^1$$
 by

$$p(z,t) = \frac{z^2 - 1/4}{|z^2 - 1/4|}e^{2\pi it}.$$

An open book decomposition of $RP^2 \times S^1$ is given by taking as binding the circle C and as pages the surfaces F_{θ} in $RP^2 \times S^1$ represented by $(\{-\frac{1}{2},\frac{1}{2}\} \times I) \cup p^{-1}(e^{2\pi i\theta})$ in $D^2 \times I$.

In Figure 1 I exhibit the surface $F = F_1$ in $RP^2 \times S^1$ by drawing its intersection with each $D^2 \times \{t\}$ in $D^2 \times I$. The boundary of F is C.

 $F \cap D^2 \times \{\frac{1}{2}\}$ is not a manifold, because F has a saddle at this level (i.e., a critical point with respect to the Morse function proj: $RP^2 \times S^1 \to S^1$). Because the only critical point is of index one, $\chi(F) = -1$. Thus F, being nonorientable, is a punctured Klein bottle. Because F is the graph of a function from $D^2 - \{-\frac{1}{2}, \frac{1}{2}\} \to [0, 1)$, we see that $RP^2 \times S^1 - C$ is foliated by leaves which are simply copies of

Received by the editors February 11, 1985.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 57M12, 57M99; Secondary 55R55.

Key words and phrases. Open book decomposition, branched cover, nonorientable 3-manifold, $RP^2 \times S^1$

FIGURE 1

F translated in the S^1 direction. Indeed these are the surfaces F_{θ} , where $F = F_1$. This gives an open book decomposition of $RP^2 \times S^1$ with binding C. The intersection of this foliation with an arbitrary $D^2 \times \{t\}$ is shown in Figure 2.

FIGURE 2

REFERENCES

- 1. I. Berstein and A. Edmonds, On the construction of branched coverings of low-dimensional manifolds, Trans. Amer. Math. Soc. 247 (1979), 87-124.
- 2. J. Stallings, On fibering certain 3-manifolds, Topology of 3-Manifolds (M. K. Fort, ed.), Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 95-100.

DEPARTMENT OF MATHEMATICS, CORNELL UNIVERSITY, ITHACA, NEW YORK 14850