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AN OPERATOR APPROACH TO THE PRINCIPLE
OF INCLUSION AND EXCLUSION

C. J. LIU1

ABSTRACT. Using an operator approach we derive Sylvester-Whitworth for-

mulae for sets A'a. By the same token we treat the problem where both sets

of A's and B's are involved. Our result extends the Sylvester-Whitworth in-

clusion and exclusion formula to the resolution of the number of elements in

exactly mi sets of A's and mi sets of B's respectively. The formula are ap-

plied to the complete graph and complete bipartite graph. The enumeration

of spanning subgraphs with any preassigned number of disconnected cycles is

solved, together with the case where any preassigned number of vertices have

degree one.

1. Introduction. Recently, Chow and the present author introduced an oper-

ator approach to some enumeration problems in a series of articles [1, 2, 3, 4]. The

general idea is as follows. First, one constructs a vector space of formal sums on

which some operators are defined. Then a real-valued linear function on the formal

vector space is introduced. This linear function plays an important role in the whole

approach. Whether the operator method is applicable to a particular problem de-

pends on the successful search for such a function in each case. The problem we

studied by this approach are enumerations of forests and matchings of a graph and

also that of connected spanning subgraphs with preassigned cyclomatic number (of

a planar graph). In this article, we use the operator approach to treat the principle

of inclusion and exclusion which has been investigated in the past and most recently

in [5, 6, 7]. The vector space of formal sums under consideration is defined as in

references [1-4], but a different real-valued linear function is now introduced as we

are treating a different problem here. First, we derive Sylvester-Whitworth formu-

lae for sets of A's. Next, using the same formalism, we treat the problem where

both sets of A's and -B's are involved. Our result extends the Sylvester-Whitworth

inclusion and exclusion formula to the resolution of the number of elements in ex-

actly mi sets of A's and m^ sets of B's respectively. Finally, we apply the resulting

formulae to the complete graph and complete bipartite graph. The enumeration of

spanning subgraphs with any preassigned number of disconnected cycles is resolved,

together with the case where any preassigned number of vertices have degree one.

It is a pleasure to thank the referee for his valuable suggestions which resulted

in an improvement of the manuscript.

2. Main theorems. Let R — {1,..., n,..., r} be a set and P(R) be the power

set of R, i.e., the collection of all subsets in R.  Construct the vector space U of
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the formal sums generated by P(R). The linear "creation" operator is defined by

(1) A2:Q~(JU«'    ?•"*<>.
v ; \0,     otherwise,

where QÇR and the 0 in (1) is the zero formal sum in U.

Let Ai,...,An,...,Ar be r sets in the universe U. Denote by AiAj ■ • ■ Ak the

intersection A» i~l Aj D • • • f*l Ak- Denote by N(A{Aj ■ ■ ■ Ak) the number of elements

in AiA3 ■ ■ ■ Ak- Next, we define a linear function p on the space U by

(2) p:Q^N(AQ),        Aq = Y[Aí.
ieQ

It follows from (1) and (2) that

(3) XiXj = XjXi,        A,2 = 0,..., ¿,j'eR

and

(4) N(AQU{1}) = N(AQAZ),    XiiQ.

LEMMA 1.   Let S be a subset of R and S Ci{l,...,n} = 0.  Then

(5) P 1(1-W N(AsAi---An)

where Ai is the complement of A%.

PROOF. Use mathematical induction on n.

P

(6)

n+l

Ili1-^)5
i=i

p tl(i-K)s
¿=1

J(l - \t)S U {n + 1}

= N(AsAi ---An)- N(AsAn+iAi ■ ■ ■ An)

= N(AsAi---An+i).

The last step follows from the inclusion and exclusion argument.

LEMMA 2.   Let S be a subset ofR and S n {1,... ,n} - 0. Then

(7)

where

(8)

Nm(As) = p f[(l-Xi)±-XmS
XA m!
x=i

0< m <

Nm(As)=     ¿     N(AsAll---AlmA]l

(9)

(10)

and

(H)

{ú,...,2m}n{ji,...,j„_m} = 0,

{il,...,im}U{jl,..-,jn-m} ={li •••,»}

A = Xi + .-. + A„.
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PROOF. It follows from (3) that

1
(12)

and

(13)

Hence

(14)    p

;\r

ii<--<i„

7 „     Xi1 ■ ■ ■ Xlm

:—«m

¿=1 l<"<»m 3#ll....,»»l

¿(l-^A-S J]     (l-A^SUfr ,  .  . .  , t«m-  E "
.¿=1 J il<-'<¿m

Then Lemma 1 completes the proof.

THEOREM 1. Let Ai,...,Ar be r sets in a universe U- Let S be a subset of

R, R = {1,..., n,..., r}, and S D {1,..., n} — 0. Denote by Wm(As) the number

of the sizes of all m-tuple intersections of As and A^s, i — 1,... ,n. Then the

number of elements in exactly m of Ai As, Nm(As), is given by

(15) Nr, (AS) = £ (-l)fc    m +       Wm+k(As),        0 < m < n,

fe=0

Y[(l-Xi) = e-\
i=l

which is the Sylvester- Whitworth inclusion and exclusion formula.

PROOF. By (3) it is readily seen that

(16) 1 - Xi = e"A*

and

(17)

Then Lemma 2 yields

(18) Nm(As

By definition, one reads

(19) p [¿A-/

The relations of (18) and (19) lead to (15).

REMARKS, (i) It follows from (18) and (19) that

Wm(As) = p I ( —.X1

I*
-^¡Xme-xS
m!

=     £    N(AsAll---AlJ=Wm(As).

ml

(20)

n — m      .j

= £ ¿TM[Am+fce-^]

fc = 0

n — m

^rl^^Ms)
fc=0

m
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which can also be established by combinatorial analysis [8].

(ii) The operator approach used here has certain similarity to the symbolic

method [5]. However, they are not identical since every term in the operator ap-

proach can be identified while the symbolic method fails to do so.

Next, we use the same formalism to generalize the Sylvester-Whitworth formula

which provides the resolution to the number of elements in mi sets of A's and in m2

sets of B's (both A's and B's are sets in the universe IT). To do this, we proceed

as follows. Let Rfc = {1,. ..,n¿, ...,1"*}, k = 1,2. Denote by P(Ri x Ra) the
power set of the Cartesian product Ri x R2. Construct the vector space U2 of the

formal sums generated by P(Ri x R2) with real coefficients. The linear operators

A' ', k = 1,2, are defined by

(21)
X(¡k):(Qi,Q2)

(QiU{i},Q2), if k= 1 andi^Qi,
(Qi,Q2^{i}), if fc = 2 and z'<£ Q2,
0, otherwise,

where Qk Q Rfc, A; = 1,2, and 0 in (21) is the zero formal sum in U2.

It follows from (21)

A(fc)A(fc)
(22)

and

(23)

A(fc)A(fc) _ x{kh{k) o, fc = l,2,

A„(1)AÍ2)x?h^.
3 3

Let Ai,..., Ani,..., Ari, Bi,... ,B„2,... ,BT2 be (ri + r2) sets in the universe

U. Define a linear function p on the space U2 by

(24)

where

(25)

p: (Qi,Q2) ^ N(AQlBQ7

aqi = nAi and bqi = nBi-
ieQi i€Q2

It is readily seen that

(26) N(AQlU{i}BQ2U{j}) = N(AQiBQ2AlB]),

provided i G Ri, i£Qi, j G R2,j ^ Q2-
The following result can be established easily by the same argument used in the

proof of Lemma 1.

LEMMA 3.   Let Sk be a subset of Rfc and Sk D {1,..., rifc} = 0, k = 1,2.  Then

(27) H

2     nk

J(l-X^)(Si,S2) :iv|iSlBS2nn^
¿=i j=iLfc=ii=i

LEMMA 4.   Let Sk be a subset ofRk and SkO {!,-■■ ,nk} = 0, k = 1,2.  Then

2     nk

(28) Nmumi^StBst) =P nn^t1-^)^)"11^'^:
fc=l¿=l

mfc!

where
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(29)    Nmum2(ASlBS2)
Til "2

=      E E      N(ASlBS2All---AlmiBn
¿l< — <imi Jl<-"<Jma

• ' • SJm2 ^fci ' • ' Akni -m, B;, • • • B;

(30) {¿l,...,í'mi}n{Al,...,Ani_mi} = 0,

{i'i,...,¿ml}U{Ai,...,fcni_mi} = {l,...,ni},    etc.(31)

and

(32) A(fc> = AÍfc) + --- + AW,    fc = l,2.

PROOF. It follows from (22) and (23)

1 "fc

(33) -^(A^r-   E  A!i)---Aw>    fc = 1-2-
ll<- "<lm,

Hence

(34)

nni(i-f)(A(fc)rt(s"s2)
Lfc=ii=i

mk\

-   E     E  "
¿l<-'<îmi Jl<...<Jmj

n    n d-AS")
t^il.-.tm, J#Jl>."lJmä

■(l-A}aW-MÍ)1AÍ8>-A£(S1,4]

m "2

-  E     Em
ni "2

¿l<-"<tmI Íl<-<Ím2        |_*#*1.im, ¿#¿t>—iA»a

l(2)

n    n (t-*!1»)

• (1 - A]2))(S! U {»!,.. .,tmi}, S2 U Oi, . . . .¿„J)

Lemma 3 completes the proof.

THEOREM 2. Let Ai,...,Ani,...,Ari,Bi,...,B„2,...,Br2 6e (n + r2) seis

m a universe U. Let Sk be a subset of Rfc tm'i/i Rfc = {1, ...,nfc,...,rjfe} and

Skn{1,...,nfc} = 0, fc = l,2. T/ien

rii — iiii   ri2 —"'2 / ,     1        \      / i     Í

yö°) fci=o fc2=o v

• Wmi+kum2+k2(As1Bs2),

mi m2
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where

(36) Wmum2(ASlBs2) =2 £     N^Bs.A, - ■ ■ Alm¡ Bn ■ ■ ■ Bjm2 )
>l<'"<*mj jl< ■<3m2

and Nmi,m2(As1Bs2) is the number of elements in exactly mi of AiAslt i —

1,...,ni, and m2 of BjBs2, j = 1,... ,n2, respectively.

PROOF. By (22) and (23) one finds

nk

(37) YH1-#)) = e-A<*> fc=l,2,
¿=1

where A^fc) is defined by (32). It follows from Lemma 4

(38) Nmiim2(ASlBs2) =fi ft -L(AW)*»e-*w(5i,ft)
fc=i mk-

By definition, we have

2

(39)

n^.i^rnsus,)

=      J2 E     N(ASlBS2A1-.-AlmiBJ1---BJrn2)
il<-<itn, jl<-<jm2

= Wmum2(ASlBs2).

The theorem is established by (38) and (39).

3. Spanning subgraphs with disconnected cycles and vertices of degree

one. For a complete graph Kn, let Pd(n) be the number of d-component spanning

unicyclic subgraphs with cycle length It,... ,l¿ respectively. For d = 1, it is known

[9]   '

(40) pi(n) = \(n)in
n-l-l

In fact, (40) can be established easily by considering all spanning subgraphs with a

cycle of cycle length / attaching to a /-component forests which can be enumerated

by the Kirchoff matrix [1, 4, 10], i.e.,

(41) pi(n)^(r¡Y2(l-mnn-1-1}-

Using the same arguments, it is readily seen that

(42) PdM-¿(nfc) {n)in n-l-l

where

(43) I = h + • ■ ■ + ld.
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For a complete bipartite graph Kni,„7, let Pci(ni,n2) be the number of d-

component spanning unicyclic subgraphs with cycle length 2/i,..., 2l¿ respectively.

A straightforward calculation yields

(44) Pd(nun2) = ^ lf[li\     (m + n2 - IKniMnaJinï»-1-1^1"'""1

where

(45) l = lx + ... + ld.

We now consider the application of Theorems 1 and 2. First, we take up the

complete graph Kn. Let A¿ be the set of spanning subgraphs of Kn with vertex i

having degree one. Let As be the set of a d-component, d = \S\, spanning unicyclic

subgraphs of Kn- It is readily seen that

fc

N(AsAit ■ ■ ■ Alk) — T [  (number of edges containing vertex ij)p¿(n - k)

3=1

= (n- k)kpd(n- k).

(46)

It follows from (20)

(47) Wk{As)^r¡¡\{n-k)kpd(n-k).

Denote by Nmn''(li,...,l¿) the number of d-component spanning unicyclic sub-

graphs of Kn with m vertices of degree one and d disconnected cycles each of which

have cycle length It,...,Id respectively. Theorem 1 and (47) lead to

<48>    <"'«■.« - ä E <-'>t+"(^ifeg¡"'" - «=)•
It follows from (42)

where {¿} is the Stirling number of the second kind.

Second, we consider the complete bipartite graph Kni,n2- Let M be the set of

spanning subgraphs of Ä"ni:„2 with vertex i, i = 1,... ,m, having degree one and

Bj be the set of spanning subgraphs of Knun2 with vertex j, j = 1,..., n2, having

degree one. Let As!Bs2 be the set of a d-component, d — \Si\ = \S2\, spanning

unicyclic subgraphs of Kni%n2. A calculation similar to that of the complete graph

Kn yields the following result

(50) Wkuk2(ASlBs2) = | Jj J (nk2)(ni-ki)k*(n2-k2)k>pd(ni,n2).

Denote by Nmu'ml (2h,... ,2ld) the number of d-component spanning unicyclic

subgraphs of Kni,n2 with mi, among ni, vertices having degree one in one part

and m2, among n2, vertices having degree one in another part, together with d dis-

connected cycles each of which have cycle length 2/i,..., 2l¿ respectively. Theorem
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2 and (50) lead to

(51)   N£^2\2h,...,2ld)

nx\n2\   Jl   J^1 {n1-ki)h>(n2-h2)ki
mi\m2\J-^     ¿-^   (m - fci)!(rCi-mi)!(n2 - fc2)!(fc2-m2)

«i=mi k2=m2

(_1)fcl+fc2+mi+m2^(ni _ kiri2 _ k2y

Using (44), we have

(53)    N^:Zl\2li,...,2ld)

—'■—'-{Dmi(ni;n2;l)Dm2(n2;ni - l;l)
mi'.m2l

and

+ Dmi(n1;n2 - l;l)Dm2(n2;ni;l)

- Dmi(ni;n2 - 1;l)Dm2(n2;nx - 1;I)}

l = li + ---+ld

where

í

(54) Dm(a;b;c) = J2c¡
fc=0

b-c\  \  b-c-k

k     I  | a — c — m

REMARK. The relations of (48) and (51) can also be used in other enumeration

problems. For example, let po(n) be the number of spanning trees of the complete

graph Kn- Denote by Nm the number of spanning trees of Kn with m vertices

having degree one. Then

(55) A^ = ^(n-2j

m! I n - m I

is the result of (48).  Historically, Rényi obtained (55) from a recurrence relation

[11]

(56) ÎÏJVJM = („ - m)N^:x1) + mN^~xK

Next, let po(ni>n2) be the number of spanning trees of the complete bipartite

graph Kni!n2- Denote by Nm^ml the number of spanning trees of Kni,nt with

mi, among n\, vertices having degree one in one part and m2, among n2, vertices

having degree one in another part respectively. It follows from (51)

Í57) v.n,,n,)=  "i'"2!   j   ni-1   M   na-1   1

[    ' mi'm>       mi\m2\\n2-m2f\ni-mif-

We announce here (to be published elsewhere) the following result concerning
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|W ¿(*) /)(*)    ,•_the case with sets Ax  ,..., A„;,..., Âf/, i = 1,..., p, in the universe U:

(58) lfmu....n>,[ílA%]  = n
IJ=1 /        ¿=1

■W,

nt —mi

E
. fc¿=0

mi+ki,...,mp+k

We note that (58) is equivalent to Theorem 4 in reference [12].
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