LOWER BOUNDS FOR CLASS NUMBERS OF REAL QUADRATIC FIELDS

R. A. MOLLIN ${ }^{1}$

Abstract

Based on the fundamental units of real quadratic fields we provide lower bounds for their class numbers. These results extend work of H. Hasse [2] and generalize and correct results of H . Yokoi [8, 9]. Moreover, for certain real quadratic fields we provide criteria for their class numbers to be divisible by a specific integer.

We begin by introducing certain types of real quadratic fields, the first of which is attributable to C. Richaud [7] and G. Degert [1].

Definition 1. If $n=m^{2}+r \neq 5$ is a positive square-free integer, where r divides $4 m$ and $r \in(-m, m$], then n is said to be of (wide) Richaud-Degert ($R-D$) type. If $|r|=1$ or 4 , then n is said to be of narrow $R-D$ type. (Note that when the norm $N(\varepsilon)$ of the fundamental unit ε of $Q(\sqrt{n})$ is -1 , then n is necessarily of narrow R-D type, whereas if $N(\varepsilon)=1$, then n may be of the more general wide R-D type.)

Types different from the above were studied by H. Yokoi in [8, 9]. These types are now described.

Definition 2. Let n be a positive integer with no square factor except possibly 4. Then
(I) Let p be any prime congruent to 1 modulo 4 , and let a, b denote the (unique) integers such that $a^{2}+4=b p^{2}\left(0<a<p^{2}\right)$. If $n=p^{2} m^{2} \pm 2 a m+b$, where $m>p+1$ if n is square free and $m>4 p+1$ otherwise, then if n is not of (wide) R-D type we say that n is of Yokoi type 1 (see [8]).
(II) Let p be any prime congruent to 3 modulo 4 , and let $n=p^{2} m^{2} \pm 4 m$, where $m>p+1$ if n is square-free and $m>4 p+1$ otherwise. Then if n is not of (narrow) R-D type we say that n is of Yokoi type 2 (see [9]).

The following result is attributable to Davenport, Ankeny and Hasse (see [2]).
Lemma 1. Let $K=Q(\sqrt{n})$, where n is a positive square-free integer, and let $\varepsilon=(T+U \sqrt{n}) / 2$ be the fundamental unit of K. If there exist integers x and y such that $x^{2}-n y^{2}= \pm 4 m$, where $m>0$ and not a square, then $m \geqslant(T-2) / U^{2}$ for $N(\varepsilon)=1$ and $m \geqslant T / U^{2}$ for $N(\varepsilon)=-1$.

Now we use the above to establish lower bounds for class numbers of real quadratic fields. In what follows $h(n)$ denotes the class number of $Q(\sqrt{n})$.

Received by the editors February 27, 1985.
1980 Mathematics Subject Classification. Primary 12A50, 12A25; Secondary 12A95.
${ }^{1}$ The author's research is supported by N.S.E.R.C. Canada.

Theorem 1. Let n be a positive square-free integer and denote the fundamental unit of $K=Q(\sqrt{n})$ by $\varepsilon=(T+U \sqrt{n}) / 2$. If p is a prime which is not inert in K, and $h(n)$ is odd, then

$$
h(n) \geqslant \frac{\log \left(\sqrt{n U^{2}+4}-2\right)-2 \log (U)}{\log (p)} \quad \text { if } N(\varepsilon)=1
$$

and

$$
h(n) \geqslant \frac{\log \sqrt{n U^{2}-4}-2 \log (U)}{\log (p)} \quad \text { if } N(\varepsilon)=-1
$$

Proof. If P is a K-prime above p and k is the order of P in the class group of K, then k divides $h(n)$ and $N\left(P^{k}\right)= \pm 4 p^{k}=a^{2}-n b^{2}$, where a and b are integers. Also, k is odd, since p is not inert and $h(n)$ is odd. Thus we may invoke Lemma 1 to get

$$
p^{h(n)} \geqslant p^{k} \geqslant \begin{cases}(T-2) / U^{2} & \text { if } N(\varepsilon)=1 \\ T / U^{2} & \text { if } N(\varepsilon)=-1\end{cases}
$$

which implies

$$
h(n) \geqslant \begin{cases}\frac{\log (T-2)-2 \log (U)}{\log (p)} & \text { if } N(\varepsilon)=1 \\ \frac{\log (T)-2 \log (U)}{\log (p)} & \text { if } N(\varepsilon)=-1\end{cases}
$$

However, $T-2=\sqrt{n U^{2}+4}-2$ if $N(\varepsilon)=1$, and $T=\sqrt{n U^{2}-4}$ if $N(\varepsilon)=-1$. Q.E.D'

The following generalizes and corrects [8, Theorem 3, p. 147].
Corollary 1. Let $n=p^{2} m^{2} \pm 2 a m+b$ be of Yokoi type I , where p is not inert in K and $h(n)$ is odd. Then $h(n)>1$, and the following provides a lower bound.

$$
h(n) \geqslant \begin{cases}\frac{\log \sqrt{n p^{2}-4}}{\log (p)}-2 & \text { if } n \text { is square-free } \\ \frac{\log \frac{1}{4} \sqrt{n p^{2}-4}}{\log (p)}-2 & \text { otherwise }\end{cases}
$$

Proof. By [8, Theorem 2, p. 144] $N(\varepsilon)=-1, T=p^{2} m \pm a$ and

$$
U= \begin{cases}p & \text { if } n \text { is square-free } \\ 2 p & \text { otherwise }\end{cases}
$$

Therefore by Theorem 1

$$
h(n) \geqslant \begin{cases}\frac{\log \sqrt{n p^{2}-4}}{\log (p)}-2 & \text { if } n \text { is square-free, } \\ \frac{\log \frac{1}{4} \sqrt{n p^{2}-4}}{\log (p)}-2 & \text { otherwise. }\end{cases}
$$

Moreover, by Definition 2, $m>p+1$ if n is square-free and $m>4 p+1$ if $n \equiv 0$ $(\bmod 4)$. Thus $T / U^{2}>p$, which implies $h(n)>1$ as in the proof of Theorem 1. Q.E.D.

We note that in [8, Theorem 3, p. 147, bottom line] Yokoi invalidly uses Lemma 1 by ignoring the fact that $h(n)$ may be even (which is not the case in Hasse's use of Lemma 1 in [2, p. 59], wherein $h(n)$ is odd). This same error was made by Yokoi in [9, Theorem 2, pp. 111-112] (and there is a misprint in the statement thereof), which the following result generalizes and corrects. Please note that in a recent letter to the author Professor Yokoi has indicated that although his proofs are indeed incomplete he has found a proof of the omitted case to verify his results in their entirety.

Corollary 2. Let $n=p^{2} m^{2} \pm 4 m$ be of Yokoi type II, where p is not inert in K and $h(n)$ is odd. Then $h(n)>1$, and the following provides a lower bound.

$$
h(n) \geqslant \begin{cases}\frac{\log \left(\sqrt{n p^{2}+4}-2\right)}{\log (p)}-2 & \text { if } n \text { is square-free } \\ \frac{\log \frac{1}{4}\left(\sqrt{n p^{2}+4}-2\right)}{\log (p)}-2 & \text { otherwise }\end{cases}
$$

Proof. By [9, Theorem 1, p. 109] $N(\varepsilon)=1, T=\left(p^{2} m \pm 2\right)$ and

$$
U= \begin{cases}p & \text { if } n \text { is square-free } \\ 2 p & \text { otherwise }\end{cases}
$$

Therefore by Theorem 1

$$
h(n) \geqslant \begin{cases}\frac{\log \left(\sqrt{n p^{2}+4}-2\right)}{\log (p)}-2 & \text { if } n \text { is square-free, } \\ \frac{\log \frac{1}{4}\left(\sqrt{n p^{2}+4}-2\right)}{\log (p)}-2 & \text { otherwise. }\end{cases}
$$

Moreover, by Definition 2, $m>p+1$ if n is square-free, and $m>4 p+1$ otherwise. Thus $(T-2) / U^{2}>p$, which implies $h(n)>1$, as in the proof of Theorem 1. Q.E.D.

The following results on R-D types generalize Hasse [2, Satzen 2a-2c, p. 38] (see also [5]).

Corollary 3. Let $n=m^{2}+r$, where $|r|=1$, and let $h(n)$ be odd. If p is a prime which is not inert in K and $m>2 p$ for $r=1$, whereas $m>2$ for $r=-1$, then $h(n)>1$, and the following bound holds:

$$
h(n) \geqslant \begin{cases}\frac{\log \sqrt{(n-1) / 4}}{\log (p)} & \text { if } r=1, \\ \frac{\log \frac{1}{4}(\sqrt{4 n+4}-2)}{\log (p)} & \text { if } r=-1 .\end{cases}
$$

Proof. By [1 and 7] $T=2 m$ and $U=2$. Therefore by Theorem 1 the above inequalities hold. Since $m>2 p$ when $r=1$ and $m>2$ when $r=-1$, then by [5] $h(n)>1$. Q.E.D.

Corollary 4. Let $n=m^{2}+4$ and let $h(n)$ be odd. If p is a prime which is not inert in K and $m>p$, then $h(n)>1$, and the following bound holds:

$$
h(n) \geqslant(\log \sqrt{n-4}) / \log (p)
$$

Proof. By [1 and 7] $T=m$ and $U=1$. Therefore, by Theorem 1, the above inequality holds. Since $m>p$, then by [5] $h(n)>1$. Q.E.D.

Corollary 5. Let $n=m^{2}-4$ and let $\dot{h}(n)$ be odd. If p is a prime which is not inert in K, then the following bound holds:

$$
h(n) \geqslant(\log (\sqrt{n+4}-2)) / \log (p)
$$

Proof. As in Corollary 4, $T=m$ and $U=1$. The result now follows from Theorem 1. Q.E.D.

The following final consequence of Theorem 1 extends the above three results to wide R-D types.

Corollary 6. Let $n=m^{2}+r$, where $|r| \neq 1$ or 4 , and assume $h(n)$ is odd. If p is a prime which is not inert in K, then

$$
h(n) \geqslant \frac{\log \left(\sqrt{\left(4 n m^{2} / r^{2}\right)+4}-2\right)-\log \left(4 m^{2} / r^{2}\right)}{\log (p)}
$$

Proof. By [1 and 7] $T=\left(2 m^{2}+r\right) /|r|, U=2 m /|r|$, and $N(\varepsilon)=1$. Therefore by Theorem 1 the above inequality holds. Q.E.D.

We have the following further result on R-D types.
Theorem 2. Let $n=m^{2}+r>3$ be of (wide) $R-D$ type with $n \neq 1(\bmod 4)$. If $n \pm 2$ are not perfect squares when $|r|>1$, then $h(n)>1$.

Proof. If $h(n)=1$, then, since 2 is not inert in $Q(\sqrt{n})$, there exist integers a and b such that $a^{2}-n b^{2}= \pm 2($ not ± 8 since $n \not \equiv 1(\bmod 4))$. Assume furthermore that $a \geqslant 0$ and $b>0$ is chosen smallest. Now, by [1 and 7] the fundamental unit of $Q(\sqrt{n})$ is
(a) $T+U \sqrt{n}=m+\sqrt{n}$ if $|r|=1$, and
(b) $T+U \sqrt{n}=\left(2 m^{2}+r+2 m \sqrt{n}\right) /|r|$ if $|r| \neq 1$.

In case (a) if $a^{2}-n b^{2}=-2$, then from [6, Theorem $\left.108(\mathrm{a}), \mathrm{pp} .206-207\right]$ it follows that $0<b \leqslant 1 / \sqrt{m-1}$, a contradiction. If $a^{2}-n b^{2}=2$, then from [6, Theorem 108, pp. 205-206] we have $0 \leqslant b \leqslant 1 / \sqrt{m+1}$, another contradiction. In case (b) if $a^{2}-n b^{2}= \pm 2$, then from [6, ibid.] we get that either

$$
0<b \leqslant\left(4 m^{2} /\left(2 m^{2}|r|+r|r|-r^{2}\right)\right)^{1 / 2}
$$

or

$$
0 \leqslant b \leqslant\left(4 m^{2} /\left(2 m^{2}|r|+r|r|+r^{2}\right)\right)^{1 / 2}
$$

Each instance forces $b=1$; i.e., $n \pm 2=a^{2}$, contradicting the hypothesis. Q.E.D.

The above results continue work of the author [3-5]. Table 1 illustrates Theorem 2.

Table 1

n	r	m	$h(n)$
10	1	3	2
15	-1	4	2
26	1	5	2
30	5	5	2
35	-1	6	2
39	3	6	2
42	6	6	2
78	-3	9	2
82	1	9	4
87	6	9	2
95	-5	10	2
110	10	10	2
122	1	11	2
138	6	12	2
143	-1	12	2
170	1	13	4
195	1	14	4
203	7	14	2
215	-10	15	2
219	-6	15	4
222	-3	15	2
226	1	15	8
230	5	15	2
231	6	15	4
235	10	15	6
255	1	16	4

In what follows, O_{K} denotes the ring of integers of $K=Q(\sqrt{n})$, and $(x+y \sqrt{n}) / 2^{\circ}$ $\in O_{K}$ is called primitive if g.c.d. $\left(2^{\sigma} x, 2^{\sigma} y\right)=1$, where $\sigma=1$ if $n \equiv 1(\bmod 4)$, and $\sigma=O$ otherwise. Also ε denotes the fundamental unit of K, and (α) denotes the principal ideal generated by $\alpha \in O_{K}$.

Theorem 3. Let $n=r^{2}+s^{t}$ be a square-free integer with $t>1, s>1$ and s odd. Suppose that $\pm s^{c}$ is not the norm of a primitive element of O_{K} for all c properly dividing t. Then t divides $h(n)$.

Proof. Let $s=\prod_{i=1}^{m} p_{i}^{a_{i}}$, where the p_{i} are distinct primes and the a_{i} are positive. It is readily seen that $p_{i} O_{K}=\mu_{i} q_{i}$ for distinct primes μ_{i} and q_{i}. Thus

$$
((r-\sqrt{n})(r+\sqrt{n}))=\prod_{i=1}^{m}\left(p_{i}^{a_{i}} q_{i}^{a_{i}}\right)^{t} .
$$

If some μ_{i} divides both $(r-\sqrt{n})$ and $(r+\sqrt{n})$, then $2 r=r+\sqrt{n}+r-\sqrt{n}$ and $4 n=(r+\sqrt{n}-(r-\sqrt{n}))^{2}$ are in μ_{i}. Hence g.c.d. $(2 r, 4 n)=2$ is in μ_{i} forcing s to be even, a contradiction. Therefore, for a suitable choice of $\imath_{i}=\eta_{i}$ or q_{i} we have that

$$
(r+\sqrt{n})=\prod_{i=1}^{m}\left(\imath_{i}^{a_{i}}\right)^{t}=A^{t}
$$

say, is principal. Now if $g=$ g.c.d. $(t, h(n))$, then there are integers u and v such that $t u+h(n) v=g$. Hence

$$
A^{g}=A^{t u+h(n) v}=\left(A^{t}\right)^{u}\left(A^{h(n)}\right)^{v}
$$

is principal. If $A^{g}=(\alpha)$, then $N(\alpha)= \pm s^{g}$, which implies t divides $h(n)$, by hypothesis. Q.E.D.

Theorem 3 is the real quadratic field analogue of [5, Theorem 2.2]. Table 2 provides an illustration of Theorem 3.

Table 2

n	r	s	t	$h(n)$
10	1	3	2	2
26	1	5	2	2
82	1	3	4	4
347	2	7	3	3
1335	2	11	3	3
6863	2	19	3	3

References

1. G. Degert, Über die Bestimmung der Grundeinheit gewisser reell-quadratischer Zahlkorper, Abh. Mat. Sem. Univ. Hamburg 22 (1958), 92-97.
2. H. Hasse, Über mehrklassige, aber eingeschlechtige reell-quadratische Zahlkorper, Elem. Math. 20 (1965), 49-59.
3. R. Mollin, Class numbers and a generalized Fermat theorem, J. Number Theory 16 (1983), 420-429.
4. \qquad , On the cyclotomic polynomial, J. Number Theory 17 (1983), 165-175.
5. \qquad , Diophantine equations and class numbers, J. Number Theory (to appear).
6. T. Nagell, Introduction to number theory, Chelsea, New York, 1964.
7. C. Richaud, Sur la resolution des equations $x^{2}-A y^{2}= \pm 1$, Atti. Accad. Pontif. Nuovi Lincei (1866), 177-182.
8. H. Yokoi, On real quadratic fields containing units with norm -1, Nagoya Math. J. 33 (1968), 139-152. 9. \qquad , On the fundamental unit of real quadratic fields with norm 1, J. Number Theory 2 (1970), 106-115.

University of Calgary, Department of Mathematics and Statistics, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4

