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LOWER BOUNDS FOR CLASS NUMBERS

OF REAL QUADRATIC FIELDS

R. a. MOLLIN1

Abstract. Based on the fundamental units of real quadratic fields we provide lower

bounds for their class numbers. These results extend work of H. Hasse [2] and

generalize and correct results of H. Yokoi [8, 9], Moreover, for certain real quadratic

fields we provide criteria for their class numbers to be divisible by a specific integer.

We begin by introducing certain types of real quadratic fields, the first of which is

attributable to C. Richaud [7] and G. Degert [1].

Definition 1. If« = m2 + /"#5isa positive square-free integer, where r divides

Am and r g (-m, m], then n is said to be of (wide) Richaud-Degert (R-D) type. If

\r\ = 1 or 4, then n is said to be of narrow R-D type. (Note that when the norm N(e)

of the fundamental unit e of Q(yn) is -1, then n is necessarily of narrow R-D type,

whereas if N(e) = 1, then n may be of the more general wide R-D type.)

Types different from the above were studied by H. Yokoi in [8, 9]. These types are

now described.

Definition 2. Let n be a positive integer with no square factor except possibly 4.

Then

(I) Let p be any prime congruent to 1 modulo 4, and let a, b denote the (unique)

integers such that a2 + 4 = bp2 (0 < a < p2). If n = p2m2 ± 2am + b, where

m > p + 1 if n is square free and m > Ap + 1 otherwise, then if n is not of (wide)

R-D type we say that n is of Yokoi type 1 (see [8]).

(II) Let p be any prime congruent to 3 modulo 4, and let n = p2m2 ± Am, where

m > p + 1 if « is square-free and m > Ap + 1 otherwise. Then if n is not of

(narrow) R-D type we say that n is of Yokoi type 2 (see [9]).

The following result is attributable to Davenport, Ankeny and Hasse (see [2]).

Lemma 1. Let K = Q(]/n), where n is a positive square-free integer, and let

e = (T + U\/n)/2 be the fundamental unit of K. If there exist integers x and y such

that x2 — ny2 = ±Am, where m > 0 and not a square, then m > (T — 2)/U2 for

N(e) =\andm> T/U2forN(e) = -1.

Now we use the above to establish lower bounds for class numbers of real

quadratic fields. In what follows h(n) denotes the class number of Q(^/n).

Received by the editors February 27, 1985.

1980 Mathematics Subject Classification. Primary 12A50, 12A25; Secondary 12A95.

'The author's research is supported by N.S.E.R.C. Canada.

©1986 American Mathematical Society

0002-9939/86 $1.00 + $.25 per page

545



546 R. A. MOLLIN

Theorem 1. Let n be a positive square-free integer and denote the fundamental unit

ofK — Q(4n) by e = (T + Uvíñ)/2. If p is a prime which is not inert in K, andh(n)

is odd, then

log(y/«i/2 + 4-2)-21og(.7)
h(n)>-n~~\-    ifN(e)=l

and

M»)>'°8>/""7r,2'— **«
imp)

i.

Proof. If P is a A'-prime above /» and »V is the order of P in the class group of K,

then k divides h(n) and N(Pk) = ±Apk = a2 - «Z»2, where a and b are integers.

Also, k is odd, since /» is not inert and h(n) is odd. Thus we may invoke Lemma 1

to get

(T-2)/U2    ifW(e) = l,

-1,

which implies

/>*<">> pk >

T/U2 ifN(e)

log(r-2)-21og(f7)

h(n)
tog(/>)

log(r)-21og(L/)

if N(e) = 1,

if /V(e) = -1.

However, T - 2 = JnU2 + 4 - 2 if 7V(£) = 1, and T = ]/nU2 - A if 7V(e) = -1.

Q.E.D.
The following generalizes and corrects [8, Theorem 3, p. 147].

Corollary 1. Let n = p2m2 + 2am + b be of Yokoi type I, wherep is not inert in

Kandh(n) is odd. Thenh(n) > 1, and the following provides a lower bound.

( log/«/»2 - 4

«(«) >
log(/>)

// n is square-free,

logi\/«/»2 - 4
- 2     otherwise.

log(/>)

Proof. By [8, Theorem 2, p. 144] 7V(e) - -1, T = /?2w + a and

' /»       if « is square-free,
£/

2/»    otherwise.

Therefore by Theorem 1

h(n) >

log/«/»2 - 4

logj/«/?2 - 4

log(z')

-2       if « is square-free,

- 2    otherwise.
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Moreover, by Definition 2, m > p + 1 if « is square-free and m>4/» + lif« = 0

(mod4). Thus T/U2 > p, which implies h(n) > 1 as in the proof of Theorem 1.

Q.E.D.
We note that in [8, Theorem 3, p. 147, bottom line] Yokoi invalidly uses Lemma 1

by ignoring the fact that /■(«) may be even (which is not the case in Hasse's use of

Lemma 1 in [2, p. 59], wherein «(«) is odd). This same error was made by Yokoi in

[9, Theorem 2, pp. 111-112] (and there is a misprint in the statement thereof), which

the following result generalizes and corrects. Please note that in a recent letter to the

author Professor Yokoi has indicated that although his proofs are indeed incomplete

he has found a proof of the omitted case to verify his results in their entirety.

Corollary 2. Let n = p2m2 ± Am be of Yokoi type II, where p is not inert in K

and «(«) is odd. Then h(n) > 1, and the following provides a lower bound.

f log(/

«(«) >

np- + A »)

log(p)

log^np2 + 4-2)

log(/>)

// « is square-free,

2    otherwise.

Proof. By [9, Theorem 1, p. 109] N(e) = 1, T = (p2m ± 2) and

j p       if « is square-free,
U =

\ 2/»    otherwise.

Therefore by Theorem 1

( \og{pp2 + 4-2)

h(n) >
log(/>)

- 2 if « is square-free,

logiji «/»'+ 4

log(/>)
2    otherwise.

Moreover, by Definition 2, m > p + 1 if « is square-free, and m > Ap + 1 other-

wise. Thus (T — 2)/U2 > p, which implies «(«) > 1, as in the proof of Theorem 1.

Q.E.D.
The following results on R-D types generalize Hasse [2, Sätzen 2a-2c, p. 38] (see

also [5]).

Corollary 3. Let « = m2 + r, where \r\ = 1, and let h(n) be odd. If p is a prime

which is not inert in K and m > 2p for r = 1, whereas m > 2 for r = -1, then

h(n) > 1, and the following bound holds:

1 log/(« - l)/4

«(«)>
log(/>)

logHv^« + 4-2)

log(/>)

ifr= 1,

ifr= -1.
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Proof. By [1 and 7] T = 2m and U = 2. Therefore by Theorem 1 the above

inequalities hold. Since m > 2p when r = 1 and m > 2 when r = -1, then by [5]

«(«) > 1.    Q.E.D.

Corollary 4. Let n = m2 + A and let h(n) be odd. If p is a prime which is not

inert in K and m > p, then h(n) > 1, and the following bound holds:

h{n)> (log/« - 4)/log(/»).

Proof. By [1 and 7] T = m and U = I. Therefore, by Theorem 1, the above

inequality holds. Since m> p, then by [5] «(«) > 1.   Q.E.D.

Corollary 5. Let n = m2 — A and let h(n) be odd. If p is a prime which is not

inert in K, then the following bound holds:

«(«) > (log(v/« + 4 - 2))/\og(p).

Proof. As in Corollary A, T = m and U = 1. The result now follows from

Theorem 1.    Q.E.D.

The following final consequence of Theorem 1 extends the above three results to

wide R-D types.

Corollary 6. Let n = m2 + r, where \r\ =t 1 or A, and assume «(«) is odd. If p is

a prime which is not inert in K, then

\ogU(Anm2/r2) + 4 - 2) - log(Am2/r2)
h{n)>—i- -.

Proof. By [1 and 7] T = (2m2 + r)/\r\, U = 2m/\r\, and N(e) = 1. Therefore by

Theorem 1 the above inequality holds.   Q.E.D.

We have the following further result on R-D types.

Theorem 2. Let n = m2 + r > 3 be of (wide) R-D type with « # 1 (mod4). //

« + 2 are not perfect squares when \r\ > 1, then h(n) > 1.

Proof. If h(n) = 1, then, since 2 is not inert in Q(yn), there exist integers a and

b such that a2 — nb2 = ±2(not + 8 since « # 1 (mod4)). Assume furthermore that

a > 0 and b > 0 is chosen smallest. Now, by [1 and 7] the fundamental unit of Q(vn)

is

(a) T + l){n = m + \[n if \r\ = \, and

(b) T + V4ñ = (2m2 + r + 2m{ñ)/\r\ if \r\ # 1.

In case (a) if a2 — nb2 = -2, then from [6, Theorem 108(a), pp. 206-207] it follows

that 0 < b < 1/ \lm - \ , a contradiction. If a2 — nb2 = 2, then from [6, Theorem

108, pp. 205-206] we have 0 < b < 1/ Vw + 1, another contradiction. In case (b) if

a2 — nb2 — ±2, then from [6, ibid.] we get that either

0 < b < (4w2/(2«i2|r| + r\r\ - r2))1/2

or

0 < b < (Am2/(2m2\r\ + r\r\ + r2))1/2.

Each instance forces b = 1; i.e., « + 2 = a2, contradicting the hypothesis.    Q.E.D.
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The above results continue work of the author [3-5]. Table 1 illustrates Theorem

Table 1

n r m h(n)

10 1 3 2

15 -1 4 2

26 1 5 2

30 5 5 2

35 -1 6 2

39 3.6 2

42 6 6 2

78 -3 9 2

82 1 9 4

87 6 9 2

95 -5 10 2

110 10 10 2

122 1 11 2

138 6 12 2

143 -1 12 2

170 1 13 4

195 1 14 4

203 7 14 2

215 -10 15 2

219 -6 15 4

222 -3 15 2

226 1 15 8

230 5 15 2

231 6 15 4

235 10 15 6

255 1 16 4

In what follows, 0K denotes the ring of integers of K = Q(^fñ), and (x + y\fn)/2"

G Ok is called primitive if g.c.d.(2°;c, 2"y) = 1, where a = 1 if « = 1 (mod 4), and

a = O otherwise. Also e denotes the fundamental unit of A', and (a) denotes the

principal ideal generated by a G Ok.

Theorem 3. Let n — r2 + s' be a square-free integer with t > 1, s > 1 and s odd.

Suppose that +sc is not the norm of a primitive element of Ok for all c properly

dividing t. Then t divides h(n).

Proof. Let s = T\™,1 pf', where the /», are distinct primes and the a, are positive.

It is readily seen that ptOK = /,y,- for distinct primes ft, and p¡. Thus
m

((r-«r+¿T))= n (fît?)'-
í-i
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If some ft, divides both (r - {n~) and (r + -fn ), then 2r=r-rjñ+r-{n and

An = (r + <fñ - (r - -fñ))2 are in fl¡. Hence g.c.d.(2r,4«) = 2 is in /it forcing s to

be even, a contradiction. Therefore, for a suitable choice of 4,= ft, or y¡ we have

that
m

(r+Jn~) = U(C)' = A;
; = i

say, is principal. Now if g = g.c.d.(/, «(«)), then there are integers u and v such that

i« + h(n)v = g. Hence

AH = ¿tu+k(n)v _ (y4')"(/l',<"))t'

is principal. If Ag = (a), then N(a) = + sg, which implies / divides «(«), by

hypothesis.    Q.E.D.

Theorem 3 is the real quadratic field analogue of [5, Theorem 2.2]. Table 2

provides an illustration of Theorem 3.

Table 2

« r s t h(n)

10 1 3 2 2

26 1 5 2 2

82 1 3 4 4

347 2 7 3 3

1335 2 11 3 3

6863 2 19 3 3
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