LOWER BOUNDS FOR CLASS NUMBERS OF REAL QUADRATIC FIELDS

R. A. MOLLIN¹

ABSTRACT. Based on the fundamental units of real quadratic fields we provide lower bounds for their class numbers. These results extend work of H. Hasse [2] and generalize and *correct* results of H. Yokoi [8, 9]. Moreover, for certain real quadratic fields we provide criteria for their class numbers to be divisible by a specific integer.

We begin by introducing certain types of real quadratic fields, the first of which is attributable to C. Richaud [7] and G. Degert [1].

DEFINITION 1. If $n = m^2 + r \neq 5$ is a positive square-free integer, where r divides 4m and $r \in (-m, m]$, then n is said to be of (wide) Richaud-Degert (R-D) type. If |r| = 1 or 4, then n is said to be of narrow R-D type. (Note that when the norm $N(\varepsilon)$ of the fundamental unit ε of $Q(\sqrt{n})$ is -1, then n is necessarily of narrow R-D type, whereas if $N(\varepsilon) = 1$, then n may be of the more general wide R-D type.)

Types different from the above were studied by H. Yokoi in [8, 9]. These types are now described.

DEFINITION 2. Let n be a positive integer with no square factor except possibly 4. Then

- (I) Let p be any prime congruent to 1 modulo 4, and let a, b denote the (unique) integers such that $a^2 + 4 = bp^2$ ($0 < a < p^2$). If $n = p^2m^2 \pm 2am + b$, where m > p + 1 if n is square free and m > 4p + 1 otherwise, then if n is not of (wide) R-D type we say that n is of Yokoi type 1 (see [8]).
- (II) Let p be any prime congruent to 3 modulo 4, and let $n = p^2 m^2 \pm 4m$, where m > p + 1 if n is square-free and m > 4p + 1 otherwise. Then if n is not of (narrow) R-D type we say that n is of Yokoi type 2 (see [9]).

The following result is attributable to Davenport, Ankeny and Hasse (see [2]).

LEMMA 1. Let $K = Q(\sqrt{n})$, where n is a positive square-free integer, and let $\varepsilon = (T + U\sqrt{n})/2$ be the fundamental unit of K. If there exist integers x and y such that $x^2 - ny^2 = \pm 4m$, where m > 0 and not a square, then $m \ge (T - 2)/U^2$ for $N(\varepsilon) = 1$ and $m \ge T/U^2$ for $N(\varepsilon) = -1$.

Now we use the above to establish lower bounds for class numbers of real quadratic fields. In what follows h(n) denotes the class number of $Q(\sqrt{n})$.

Received by the editors February 27, 1985.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 12A50, 12A25; Secondary 12A95.

¹The author's research is supported by N.S.E.R.C. Canada.

546 R. A. MOLLIN

THEOREM 1. Let n be a positive square-free integer and denote the fundamental unit of $K = Q(\sqrt{n})$ by $\varepsilon = (T + U\sqrt{n})/2$. If p is a prime which is not inert in K, and h(n) is odd, then

$$h(n) \geqslant \frac{\log(\sqrt{nU^2 + 4} - 2) - 2\log(U)}{\log(p)} \quad \text{if } N(\varepsilon) = 1$$

and

$$h(n) \geqslant \frac{\log \sqrt{nU^2 - 4} - 2\log(U)}{\log(p)}$$
 if $N(\varepsilon) = -1$.

PROOF. If P is a K-prime above p and k is the order of P in the class group of K, then k divides h(n) and $N(P^k) = \pm 4p^k = a^2 - nb^2$, where a and b are integers. Also, k is odd, since p is not inert and h(n) is odd. Thus we may invoke Lemma 1 to get

$$p^{h(n)} \ge p^k \ge \begin{cases} (T-2)/U^2 & \text{if } N(\varepsilon) = 1, \\ T/U^2 & \text{if } N(\varepsilon) = -1, \end{cases}$$

which implies

$$h(n) \geqslant \begin{cases} \frac{\log(T-2) - 2\log(U)}{\log(p)} & \text{if } N(\varepsilon) = 1, \\ \frac{\log(T) - 2\log(U)}{\log(p)} & \text{if } N(\varepsilon) = -1. \end{cases}$$

However, $T-2=\sqrt{nU^2+4}-2$ if $N(\varepsilon)=1$, and $T=\sqrt{nU^2-4}$ if $N(\varepsilon)=-1$. Q.E.D.

The following generalizes and corrects [8, Theorem 3, p. 147].

COROLLARY 1. Let $n = p^2m^2 \pm 2am + b$ be of Yokoi type I, where p is not inert in K and h(n) is odd. Then h(n) > 1, and the following provides a lower bound.

$$h(n) \geqslant \begin{cases} \frac{\log\sqrt{np^2 - 4}}{\log(p)} - 2 & \text{if n is square-free}, \\ \frac{\log\frac{1}{4}\sqrt{np^2 - 4}}{\log(p)} - 2 & \text{otherwise}. \end{cases}$$

PROOF. By [8, Theorem 2, p. 144] $N(\varepsilon) = -1$, $T = p^2 m \pm a$ and $U = \begin{cases} p & \text{if } n \text{ is square-free,} \\ 2p & \text{otherwise.} \end{cases}$

Therefore by Theorem 1

$$h(n) \ge \begin{cases} \frac{\log \sqrt{np^2 - 4}}{\log(p)} - 2 & \text{if } n \text{ is square-free,} \\ \frac{\log \frac{1}{4} \sqrt{np^2 - 4}}{\log(p)} - 2 & \text{otherwise.} \end{cases}$$

Moreover, by Definition 2, m > p + 1 if n is square-free and m > 4p + 1 if $n \equiv 0 \pmod{4}$. Thus $T/U^2 > p$, which implies h(n) > 1 as in the proof of Theorem 1. O.E.D.

We note that in [8, Theorem 3, p. 147, bottom line] Yokoi invalidly uses Lemma 1 by ignoring the fact that h(n) may be even (which is not the case in Hasse's use of Lemma 1 in [2, p. 59], wherein h(n) is odd). This same error was made by Yokoi in [9, Theorem 2, pp. 111-112] (and there is a misprint in the statement thereof), which the following result generalizes and corrects. Please note that in a recent letter to the author Professor Yokoi has indicated that although his proofs are indeed incomplete he has found a proof of the omitted case to verify his results in their entirety.

COROLLARY 2. Let $n = p^2m^2 \pm 4m$ be of Yokoi type II, where p is not inert in K and h(n) is odd. Then h(n) > 1, and the following provides a lower bound.

$$h(n) \ge \begin{cases} \frac{\log(\sqrt{np^2 + 4} - 2)}{\log(p)} - 2 & \text{if n is square-free}, \\ \frac{\log^{\frac{1}{4}}(\sqrt{np^2 + 4} - 2)}{\log(p)} - 2 & \text{otherwise}. \end{cases}$$

PROOF. By [9, Theorem 1, p. 109] $N(\varepsilon) = 1$, $T = (p^2m \pm 2)$ and

$$U = \begin{cases} p & \text{if } n \text{ is square-free,} \\ 2p & \text{otherwise.} \end{cases}$$

Therefore by Theorem 1

$$h(n) \ge \begin{cases} \frac{\log(\sqrt{np^2 + 4} - 2)}{\log(p)} - 2 & \text{if } n \text{ is square-free,} \\ \frac{\log\frac{1}{4}(\sqrt{np^2 + 4} - 2)}{\log(p)} - 2 & \text{otherwise.} \end{cases}$$

Moreover, by Definition 2, m > p + 1 if n is square-free, and m > 4p + 1 otherwise. Thus $(T - 2)/U^2 > p$, which implies h(n) > 1, as in the proof of Theorem 1. Q.E.D.

The following results on R-D types generalize Hasse [2, Satzen 2a-2c, p. 38] (see also [5]).

COROLLARY 3. Let $n = m^2 + r$, where |r| = 1, and let h(n) be odd. If p is a prime which is not inert in K and m > 2p for r = 1, whereas m > 2 for r = -1, then h(n) > 1, and the following bound holds:

$$h(n) \ge \begin{cases} \frac{\log \sqrt{(n-1)/4}}{\log(p)} & \text{if } r = 1, \\ \frac{\log \frac{1}{4}(\sqrt{4n+4}-2)}{\log(p)} & \text{if } r = -1. \end{cases}$$

548 R. A. MOLLIN

PROOF. By [1 and 7] T = 2m and U = 2. Therefore by Theorem 1 the above inequalities hold. Since m > 2p when r = 1 and m > 2 when r = -1, then by [5] h(n) > 1. Q.E.D.

COROLLARY 4. Let $n = m^2 + 4$ and let h(n) be odd. If p is a prime which is not inert in K and m > p, then h(n) > 1, and the following bound holds:

$$h(n) \geqslant (\log \sqrt{n-4})/\log(p)$$
.

PROOF. By [1 and 7] T = m and U = 1. Therefore, by Theorem 1, the above inequality holds. Since m > p, then by [5] h(n) > 1. Q.E.D.

COROLLARY 5. Let $n = m^2 - 4$ and let h(n) be odd. If p is a prime which is not inert in K, then the following bound holds:

$$h(n) \geqslant (\log(\sqrt{n+4}-2))/\log(p).$$

PROOF. As in Corollary 4, T = m and U = 1. The result now follows from Theorem 1. Q.E.D.

The following final consequence of Theorem 1 extends the above three results to wide R-D types.

COROLLARY 6. Let $n = m^2 + r$, where $|r| \neq 1$ or 4, and assume h(n) is odd. If p is a prime which is not inert in K, then

$$h(n) \geqslant \frac{\log(\sqrt{(4nm^2/r^2)+4}-2)-\log(4m^2/r^2)}{\log(p)}.$$

PROOF. By [1 and 7] $T = (2m^2 + r)/|r|$, U = 2m/|r|, and $N(\varepsilon) = 1$. Therefore by Theorem 1 the above inequality holds. Q.E.D.

We have the following further result on R-D types.

THEOREM 2. Let $n = m^2 + r > 3$ be of (wide) R-D type with $n \not\equiv 1 \pmod{4}$. If $n \pm 2$ are not perfect squares when |r| > 1, then h(n) > 1.

PROOF. If h(n) = 1, then, since 2 is not inert in $Q(\sqrt{n})$, there exist integers a and b such that $a^2 - nb^2 = \pm 2$ (not ± 8 since $n \neq 1$ (mod 4)). Assume furthermore that $a \geq 0$ and b > 0 is chosen smallest. Now, by [1 and 7] the fundamental unit of $Q(\sqrt{n})$ is

(a)
$$T + U\sqrt{n} = m + \sqrt{n}$$
 if $|r| = 1$, and

(b)
$$T + U\sqrt{n} = (2m^2 + r + 2m\sqrt{n})/|r|$$
 if $|r| \neq 1$.

In case (a) if $a^2 - nb^2 = -2$, then from [6, Theorem 108 (a), pp. 206-207] it follows that $0 < b \le 1/\sqrt{m-1}$, a contradiction. If $a^2 - nb^2 = 2$, then from [6, Theorem 108, pp. 205-206] we have $0 \le b \le 1/\sqrt{m+1}$, another contradiction. In case (b) if $a^2 - nb^2 = \pm 2$, then from [6, ibid.] we get that either

$$0 < b \le \left(4m^2/(2m^2|r| + r|r| - r^2)\right)^{1/2}$$

or

$$0 \le b \le \left(4m^2/(2m^2|r| + r|r| + r^2)\right)^{1/2}.$$

Each instance forces b = 1; i.e., $n \pm 2 = a^2$, contradicting the hypothesis. Q.E.D.

The above results continue work of the author [3–5]. Table 1 illustrates Theorem 2.

Table 1							
n	r	m	h(n)				
10	1	3	2				
15	-1	4	2				
26	1	5	2				
30	5	5	2				
35	-1	. 6	2				
39	3.	6	2				
42	6	6	2				
78	-3	9	2				
82	1	9	4				
87	6	9	2				
95	-5	10	2				
110	10	10	2				
122	1	11	2				
138	6	12	2				
143	-1	12	2				
170	1	13	4				
195	1	14	4				
203	7	14	2				
215	-10	15	2				
219	-6	15	4				
222	-3	15	2				
226	1	15	8				
230	5	15	2				
231	6	15	4				
235	10	15	6				
255	1	16	4				

In what follows, O_K denotes the ring of integers of $K = Q(\sqrt{n})$, and $(x + y\sqrt{n})/2^{\sigma} \in O_K$ is called *primitive* if g.c.d. $(2^{\sigma}x, 2^{\sigma}y) = 1$, where $\sigma = 1$ if $n \equiv 1 \pmod{4}$, and $\sigma = O$ otherwise. Also ε denotes the fundamental unit of K, and (α) denotes the principal ideal generated by $\alpha \in O_K$.

THEOREM 3. Let $n = r^2 + s^t$ be a square-free integer with t > 1, s > 1 and s odd. Suppose that $\pm s^c$ is not the norm of a primitive element of O_K for all c properly dividing t. Then t divides h(n).

PROOF. Let $s = \prod_{i=1}^{m} p_i^{a_i}$, where the p_i are distinct primes and the a_i are positive. It is readily seen that $p_i O_K = p_i \varphi_i$ for distinct primes p_i and φ_i . Thus

$$((r-\sqrt{n})(r+\sqrt{n}))=\prod_{i=1}^m(\not p_i^{a_i}\not q_i^{a_i})^t.$$

550 R. A. MOLLIN

If some $\not h_i$ divides both $(r-\sqrt{n})$ and $(r+\sqrt{n})$, then $2r=r+\sqrt{n}+r-\sqrt{n}$ and $4n=(r+\sqrt{n}-(r-\sqrt{n}))^2$ are in $\not h_i$. Hence g.c.d.(2r,4n)=2 is in $\not h_i$ forcing s to be even, a contradiction. Therefore, for a suitable choice of $\imath_i=\not h_i$ or $\not e_i$ we have that

$$(r+\sqrt{n})=\prod_{i=1}^m(x_i^{a_i})^t=A^t,$$

say, is principal. Now if g = g.c.d.(t, h(n)), then there are integers u and v such that tu + h(n)v = g. Hence

$$A^{g} = A^{tu+h(n)v} = (A^{t})^{u} (A^{h(n)})^{v}$$

is principal. If $A^g = (\alpha)$, then $N(\alpha) = \pm s^g$, which implies t divides h(n), by hypothesis. Q.E.D.

Theorem 3 is the real quadratic field analogue of [5, Theorem 2.2]. Table 2 provides an illustration of Theorem 3.

Table 2										
	n	r	S	t	h(n)					
	10	1	3	2	2					
	26	1	5	2	2					
	82	1	3	4	4					
	347	2	7	3	3					
	1335	2	11	3	3					
	6863	2	19	3	3					

REFERENCES

- 1. G. Degert, Über die Bestimmung der Grundeinheit gewisser reell-quadratischer Zahlkorper, Abh. Mat. Sem. Univ. Hamburg 22 (1958), 92-97.
- 2. H. Hasse, Über mehrklassige, aber eingeschlechtige reell-quadratische Zahlkorper, Elem. Math. 20 (1965), 49-59.
 - 3. R. Mollin, Class numbers and a generalized Fermat theorem, J. Number Theory 16 (1983), 420-429.
 - 4. _____, On the cyclotomic polynomial, J. Number Theory 17 (1983), 165-175.
 - 5. _____, Diophantine equations and class numbers, J. Number Theory (to appear).
 - 6. T. Nagell, Introduction to number theory, Chelsea, New York, 1964.
- 7. C. Richaud, Sur la resolution des equations $x^2 Ay^2 = \pm 1$, Atti. Accad. Pontif. Nuovi Lincei (1866), 177–182.
 - 8. H. Yokoi, On real quadratic fields containing units with norm -1, Nagoya Math. J. 33 (1968), 139-152.
- 9. _____, On the fundamental unit of real quadratic fields with norm 1, J. Number Theory 2 (1970), 106-115.

University of Calgary, Department of Mathematics and Statistics, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4