
proceedings of the
american mathematical society
Volume 96. Number 4. April 1986

PROPERTIES OF ENDOMORPHISM RINGS

OF MODULES AND THEIR DUALS

SOUMAYA MAKDISSI KHURI

Abstract. Let RM be a nonsingular left Ä-module whose Morita context is

nondegenerate, let B = EndRA/ and let M* = HomR( M, R). We show that B is

left (right) strongly modular if and only if any element of B which has zero kernel in

R M ( MR ) has essential image in RM ( MR ). and that B is a left (right) Utumi ring if

and only if every submodule RU of R M ( í/¿ of M% ) such that U1 = 0 (x U* = 0) is

essential in RM (MR).

1. Introduction. Let „M bea left Ä-module whose standard Morita context is

nondegenerate (see Definition 1); let B = EndRM be the ring of Ä-endomorphisms

of RM and let M* = HomR(M, R)be its dual module. Then B is left nonsingular if

and only if RM is nonsingular (i.e. M satisfies the following: any m G M with

essential annihilator in R must be zero), and B is right nonsingular if and only if

M% satisfies the following condition: If UR is an essential submodule of M% then

the annihilator of U* in B must be zero (Proposition 5). This condition certainly

holds if MR is nonsingular. Of course, just as for RM, MR is nonsingular if and only

if EndRM* is right nonsingular. Our concern, however, is with B, which is in general

— for example for a nonfinitely generated RM—a proper subring of EndRM*;

hence a condition on RM which is equivalent to a certain left property of B is not

expected to be equivalent to the same right property of B when it is reflected in MR.

In this paper, we investigate this situation and try to pick out some left-right

properties of B which are symmetrically, or almost symmetrically, represented on

RM and M%. For example, we find that B is left strongly modular if and only if any

element of B which has zero kernel in RM has essential image in RM, while B is

right strongly modular if and only if any element of B which has zero kernel in MR

has essential image in M% (Theorem 3); and we find that B is a left Utumi ring if

and only if every submodule RU of RM such that U x = 0 is essential in RM, while B

is a right Utumi ring if and only if every submodule UR of MR such that x U* = 0 is

essential in M% (Theorem 7). These conditions naturally raise the general question

of how B sits in EndRM*, a question which we do not treat in this paper, but which

we expect to investigate in a future article.
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2. Preliminaries. The left and right annihilators in B of a subset K of B will be

denoted by ¿?(K) and S/t(K), respectively. The notation lM(K), rM,(K), rB(U),

lB(U*) will be used for the annihilators in M of K ç B in M* of K ç B, in B of

U çz M and in 5 of £/* ç M*, respectively. Also, for RU c RM and £/;£ ç A/JS, we

will use: IB(U) = {¿» g 5: MZ» ç [/} and 7ß(£/*) = {b & B: bM* <z U*}. The

notation RU czeRM will be used to indicate that U is an essential .R-submodule of

M, i.e. U intersects nontrivially every nonzero /v-submodule of M. Recall that RM is

said to be nonsingular in case, for m G M, lR(m) c eRR => m = 0; 5 is said to be

left (right) nonsingular if BB (BB) is nonsingular.

We recall the following definition and proposition from [4]:

Definition 1. Let (R, M, N, S) be a Morita context; that is, let RMS and SNR be

bimodules with an R-R bimodule homomorphism ( ,): M ® SN —> R and an S-S

bimodule homomorphism [,]: N ® RM -> S satisfying

mx[nx,m2] = (mx,nx)m2    and    nx(mx,n2) = [n1,m1]n2

for all m,, m2 g M and «,, «2 g N.

Then (i?, M, TV, S) is said to be nondegenerate if and only if the four modules RM,

Ms, SN, NR and the two pairings are faithful (the latter meaning that (m, N) = 0

implies m = 0, and three analogous implications).

This is equivalent to the eight natural maps associated with the Morita context

being injective (for example, two of these maps are: m >-* (m,-) and r -> (« <-* nr)

g End(sN), for m G M, n G N and r G R). The standard context (R, M, M*, B)

of a module RM is nondegenerate if and only if RM is torsionless and faithful and

the right annihilator of trace (RM) is zero. We shall call such a module—i.e. one

whose standard context is nondegenerate—a nondegenerate module, for brevity.

Proposition 1 [4, Proposition 14]. If the context (R, M, N, S) is nondegenerate,

and if one of RR, RM, SN, SS is nonsingular, then all of them are nonsingular.

Henceforth, unless otherwise indicated, let SM bea nondegenerate, nonsingular

left /i-module. Then, by the preceding, RM, MB, BM*, M% and the two pairings are

faithful, and RR, RM* and BB are nonsingular. ( , ) and [ , ] will denote the pairings

associated with the standard context for RM, i.e. ( , ) is defined by (m, f) = mf for

m G M and /g M*, and [/, m] is defined by mx[f,m] = (mx,f)m for all m,

mx G M and / g M*.

If RU is a submodule of RM then [M*,U] indicates the left ideal of B:

[M*, U] = {E*=1[m*, «,]: m* g M*, u, g U,), and similarly for [U*, M] where U%

is a submodule of M%. Also, U1= {m* g M*: (U,m*) = 0} and ±U* = {m g M:

(m,U*)= 0}.

The well-known fact that, for a nonsingular module RM, any 7<-homomorphism /,

to RM from any other Ä-module, which has essential kernel is zero, will be used

repeatedly without comment.

The following lemma will be useful to us in the sequel.

Lemma 2. For K c B, <t°(K)= IBlM(K) = lB(KM*), and 0i(K) = rB(MK) =

nrM*(K).
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Proof.

b (=Se(K) » bK= 0 «■ MbK = 0 ** Mb c lM(K) « b g IBlM(K);

b &&(K) « bK = 0~ bKM* = 0 « ¿> G lB(KM*)\

b <a@(K) « A-/» = 0 « M/0» = 0 « ft g rB(MK);

b eâ?(K) « AT/» = 0 « A7»M* = 0 «¿M* ç rM,(A:) «¿e I*rM.(K).    D

3. Strongly modular and Utumi endomorphism rings. In [2], a Baer *-ring 5 is

called strongly modular in case, for all b in 5, Sft(b) = 0 implies that ¿5 is essential

in 5. Because of the involution, the definition is left-right symmetric. In the absence

of an involution, call a ring B left strongly modular if, for b g B, =£?(/») = 0 =» Bb

c cBB, and right strongly modular if 9?(b) = 0 => bB c e 5a. It turns out that the

properties of left and right strong modularity of B = End^M are equivalent to

almost symmetric conditions on RM and MR.

Theorem 3. (i) B is left strongly modular if and only if, for each b g B,

lM(b)=0=> MbaeRM;

(ii) B is right strongly modular if and only if, for each iei, rM,(b) = 0 => bM*

c e M*.

Proof. By comparing the definition of left strong modularity with the condition

on RM in (i), it is easily seen that (i) will follow as soon as we show that "¿£(b) = 0"

is equivalent to "lM(b) = 0" and that "Bb C e BB" is equivalent to "Mb c eRM";

these equivalences will be proved in Lemma 4 which follows. Similarly, (ii) will

follow once we show, in Lemma 4, that "Sñ(b) = 0" is equivalent to "rM,(b) = 0"

and that "bB C e BB" is equivalent to "bM* C e M%".

Lemma 4. (i) For any subset K of B, if(A") = 0 // and only if lM(K) = 0 and

@(K) = 0 ifandonlyifrM,(K) = 0.

(ii) For any left ideal BH of B, BH c e BB if and only if M H c '' RM; and for any

right ideal JB of B, JB<ze BB if and only ifJM* c e M%.

Proof, (i) Let K c B and consider the submodule lM(K) of RM. If lM(K) # 0,

let 0 =t=- m G lM(K); then, by nondegeneracy, there is m* g M* such that [m*, m] #

0. Then, since MB is faithful, 0 =£ M[m*, m] = (M, m*)m Q Rm c IM(K); that is,

0 * [m*,m]<E IBlM(K).Hence,lM(K) = Oifandon\yif^(K) = IBlM(K) = 0.

Similarly, if 0 + m* g rM,(K), then nondegeneracy gives m g M such that

[m*, m] ¥= 0, and since ßM* is faithful, [m*, m] is a nonzero element of I%rM,(K);

hence/-M.(AT) = 0 if and only if 91 (K ) = I*BrM,(K) = 0.

(ii) Let BH be an essential left ideal of B and let 0 # «7 G M. Then [M*, m] n H

# 0, and, since MB is faithful,

0 * M([M*,m] HH)çz M[M*,m) n A/7/ = (M,M*)m n MH Q Rm n MH,

proving that A/// a1'RM.

Conversely, assume that M H c" RM for some left ideal BH of B and let

Oitcefi. Then, since MB is faithful, Mc * 0, and hence Me n M/7 * 0. By

nondegeneracy,

0 * [M*,Mc n MH] Q [M*,Mc] C\[M*, MH] ç Be n[M*,MH].
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This shows that [M*, MH] c eBB, and hence, since [M*, MH] ç BH, we have
BH c eBB.

Similarly, if J is an essential right ideal of B and 0 # m* G M*, then, by

nondegeneracy, [m*, M] ± 0, hence [m*, M] n J ^ 0. Since M\* is faithful, this

implies

0 ¥= ([m*, M] C\J)M* ç [m*, M] A/* n JM*

= w*( A/, A/*) n JM* c w*Ä n JM* ;

so /A/* CM*.

Conversely, if JM* c e Ai*, for some right ideal Jß of 5, and 0 # c e i, then

JM* n cAf* ¥= 0 and [JM* n cA/*, M] ¥= 0 by nondegeneracy; hence,

0 * [JM* n cM*,M] ç [JM*,M] n[cM*,M] ç [JM*,M] HcB.

This implies that [JM*, M] c '' BB, and hence, since [JM*, M] ç J, we have JB c ''

Remarks. 1. One property of nondegenerate modules that can be deduced from

the proof of Lemma 4 is that IB(U) = 0 if and only if U = 0 for a submodule RU of

RM, and similarly for UR c MR.

2. In the proof of Lemma 4(ii), we have shown that RU C eÄM => [M*, cV] c ^5

and U% aL' M*R=> [U*, M] c e BB.

Aside from completing the proof of Theorem 3, Lemma 4 is also useful in giving a

condition on M*. which is equivalent to right nonsingularity of B, as in the next

result.

Proposition 5. B is right nonsingular if and only if, for any submodule UR of M*,

t/* c e M* =» lB(U*) = 0.

Proof. It was shown in [3, Proposition 1] that, under our present hypotheses, B is

right nonsingular if and only if, for any submodule RU of RM, rB(U) cze BB => U =

0.

Assume that B is right nonsingular and suppose that UR c f MR; then, as noted

in    Remark    2    above,    [U*, M] c e BB.    We   have   (MlB(U*))[U*, M] =

(MlB(U*), U*)M = 0;    therefore   [£/*, M] c rB(MlB(U*)),   which    implies

rB(MlB(U*)) c e #B. Hence, by [3, Proposition 1], since B is right nonsingular, this

implies that MlB(U*) = 0; hence, since MB is faithful, we have lB(U*) = 0.

Conversely, assume that i/^C MR implies lB(U*) = 0. Suppose that RU is a

submodule of RM such that rB(U) c e Äfl. Then, by Lemma 4(h), t7| = rB(U)M*

c <■ M*. Hence, by hypothesis, lB(rB(U)M*) = 0. But 7S(Í/) c lB(rB(U)M*) since,

always, IB(U)rB(U) = 0; hence IB(U) = 0, which, by nondegeneracy (see Remark

1), implies that U = 0, completing the proof.    D

A ring B is said to be a fe/f í/ím«« ri«g in case, for any left ideal BH of 5,

9t(BH) = 0 =» s/7 c <*fli?; 5 is called a right Utumi ring if, for any right ideal JB of

B, ä/(JB) = 0 => JB c '' ßß. In [2], it is shown that a strongly modular Baer *-ring

is left and right Utumi [2, Theorem 2.3]. In our situation, i.e. for B = End^M, where

RM is nondegenerate and nonsingular, it is easily shown that a left and right

strongly modular Baer ring satisfies the Utumi conditions for principal left and right
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ideals. In fact, B need not be a Baer ring to show this; rather, left and right

nonsingularity of B is sufficient, with left and right strong modularity, in order to

obtain the Utumi conditions for principal ideals, as can be seen in Proposition 6. For

the full Utumi conditions on B, however, we can give, in Theorem 7, conditions on

R M and MR which appear quite symmetrical.

Proposition 6. If RM is such that B = End^M is a left and right nonsingular, left

and right strongly modular ring, then

(i) S£(bB) = 0=> bB ae BB, and (ii) 9l(Bb) = 0 => Bb c e BB.

Proof, (i)

y(bB) = &(b) = 0 => BbczeBB    since B is left strongly modular,

=> 9î(Bb) = 0   since B is left nonsingular,

=> bB C BB    since B is right strongly modular.

(ii)

9ê(Bb) = 91(b) = 0 => bB C BB    since B is right strongly modular,

=» S£(bB) = 0    since B is right nonsingular,

=> Bb <zeBB    since B is left strongly modular.    D

For our last result, RM is assumed to satisfy the standing hypothesis, i.e. RM is

nonsingular and nondegenerate.

Theorem 7. (i) B = End^M is a left Utumi ring if and only if, for any submodule

Rí/ of RM, U x = 0 => RU c eRM; and (ii) B = EndÄM is a right Utumi ring if and

only if, for any submodule UR of MR, x U* = 0 => UR c " MR.

Proof, (i) Assume that B is a left Utumi ring; then, by [3, Lemma 3], we have, for

any submodule RX of RM, rB(RX) = 0 => RX ae RM. Let RU be a sub module of

RM such that Ux = 0. Then b g rB(U) => Ub = 0 => (Í7, 2>m*) = (£/&, w*) = 0, for

each m* g M*, => ¿«i* = 0 since Ux = 0; but this means ¿»M* = 0, therefore,

since BM* is faithful, b = 0. Hence rB(U) = 0, which implies, since 5 is left Utumi,

that RU ceRM.

Conversely, assume that RUX = 0 => RU c f,M for every Ri/ ç RM. Let B// be a

left ideal of 5 with 9?(BH) = 0. If (M/7, m*) = 0, then (M, /7m*) = 0, which

implies /7«7* = 0 by nondegeneracy. Then [Hm*, M] = 0, i.e. //[w*, M] = 0, which

implies [m*, M] = 0 since 91(H) = 0. Again by nondegeneracy, [m*, M] = 0 => m*

= 0. Hence, we have shown that (MH, m*) = 0 => w* = 0, i.e. (MH)x = 0, which

by hypothesis implies that M// c efiM. Now, by Lemma 4(ii), this gives BH c ''gfi,

and 5 is left Utumi.

(ii) Assume that B is a right Utumi ring. Let UR be a sub module of M^ such that

XU* = 0. Consider the right ideal [U*, M] of B. If m[U*, M] = 0, then (m, U*)M

= 0, hence, since RM is faithful, (m, U*) = 0, which gives m = 0 since ^lV* = 0.

Therefore, /M([t/*, M]) = 0, hence, by Lemma 4(i), £C([U*, M]) = 0, which implies

that [U*, M]cie BB since B is right Utumi. Then, by Lemma 4(ii), [U*, M]M* c e

M%. But [Í/*, M]M* ç U*, hence i/^ C e M*, and we have shown that XU* = 0

implies UR cie MR.
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Conversely, assume that xU* = 0 => UR a e M* for any submodule UR of MR.

Let JB be a right ideal of B such that ¿t°(JB) = 0. Then, by Lemma 4(i), lM(J) = 0;

hence, if (m, JM*) = 0, then mJ = Oby nondegeneracy, and m = 0 since lM(J) = 0.

Thus, X(JM*) = 0, which, by hypothesis, implies that JM* c e M%. Finally, by

Lemma 4(ii), JM* c " M* => /ß C BB, completing the proof that B is right

Utumi.    D

Remarks. 1. The nondegeneracy condition on RM cannot be deleted from the

hypothesis of Theorem 7, as we shall see in the following example.

First recall that a CS module is one in which every complement (= essentially

closed) submodule is a direct summand, with a ring R being left or right CS

whenever RR or RR is a CS module. In [1], an example is given of a nonsingular,

projective CS module P whose endomorphism ring, B = End P, is not left CS

(Example 3.3 in [1]). We will show that, for such a P, the condition "Ux = 0 => U

c e P, for any submodule U of P " of Theorem 7(i) does hold, and yet B = End P is

not left Utumi, the reason being that the nondegeneracy condition does not hold in

P.

Assume that Ux = 0 for a submodule U of P. Then, b g rB(U) => Ub = 0 =>

(U, bP*) = (Ub, P*) = 0 => bP* = 0 since Ux = 0, and this last gives b = 0 since

BP* is faithful, which shows that rB(U) = 0. Now, since P is a CS module, the

essential-closure, Ue, of U is a direct summand in P, say P = Ue ® V, and there is

an idempotent b g 5 such that t/^ft = 0 and ufe = v for u g V; then rB(U) = 0

implies that ft = 0, so V = 0 and {/ c e P.

To see that B is not left Utumi, recall first that a ring is left nonsingular, left CS if

and only if it is Baer and left Utumi (cf. e.g. [1, Theorem 2.1]); thus, since B is not

left CS, it will suffice to show that B is Baer: Let J be any subset of B, then the

essential closure, (PJ)e, of PJ is a direct summand in P since P is CS, say

P = (PJ)e © U; then, letting e be the idempotent in B with kere = (PJ)e, we have

@(J) = rB(PJ) = rBÍ(PJY) - eB< which proves that /i is a Baer ring.

Finally, to see that nondegeneracy of P does not hold, we remark that (a) P

nondegenerate => IB(U) # 0 for every nonzero submodule U of P, as noted in

Remark 1 following Theorem 3; and (b) "IB(U) =£ 0 for every 0 =£ U ç P" does not

hold in P, because by Lemma 3 of [3] a nonsingular module with this property has a

left Utumi endomorphism ring if and only if "rB(U) = 0 => U C P", and we have

just shown this last to be true in P, whereas B is not left Utumi.

2. In the special case when the nondegenerate, nonsingular RM is RR, it is easy to

see that the conditions in Theorem 7 are precisely the Utumi conditions for a left

and right nonsingular R. We verify this for the left Utumi condition, by noting that

"Í/J- = 0" becomes just "rB(U) = 0" or "91(1) = 0" for / a left ideal in B. For, in

this case, B = End(RR) = R; thus, if RU = RI is a left ideal in R, then /x = 0 =>

rB(I) = 0: ft g rB(I) => lb = 0 => (I,bR*)= (lb, R*) = 0 =» bR* = 0 since Ix =

0, =» ft = 0 since BR* is faithful; and, conversely, rB(I) = 0=>/±==0: r*G/±=>

(/, r*) = 0 =» Ir*r = (I, r*r) = 0 for each r g R, and this last implies that r*r = 0

for each r G /?, when we consider r*r as being in R = B and use the fact that

rB(I) = 0; finally, r*/? = 0 =» r* = 0 since /?*, is faithful.
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