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COUNTEREXAMPLE TO THE SPECTRAL MAPPING THEOREM

FOR THE EXPONENTIAL FUNCTION1

1. HEJTMANEK AND HANS G. KAPER

Abstract. An example is given of an unbounded operator in a Hubert space which

generates a strongly continuous semigroup and for which the spectral mapping

theorem for the exponential function does not hold. The spectra of both the

generator and the semigroup are determined explicitly.

1. Introduction. Let A" be a Banach space and W = [W(t): t > 0] a strongly

continuous semigroup of bounded linear operators on X with generator A, W(t) =

exp(^i). The spectral bound of the generator, s, is

5 = sup {Re À: À e a (A)};

the type of the semigroup, w0, is

w0= inf{wG R:3M> l,\ft > 0, ||W(r)||< Mexp(ut)}.

It is well known that 5 < w0. Furthermore, r(W(t)) = exp(io0t), where r is the

spectral radius.

In general, exp(a(A)i) C o(W(t))\ {0}. The identity

exp(ff(/í)í) = o(W(t))\{0}    for all / > 0,

is known as the Spectral Mapping Theorem (SMT) for the exponential function.

SMT is true if [W(t): t > r0] is uniformly continuous for some t0 > 0 (see Davies

[1980, Theorem 2.19]). SMT cannot be true if s < w0.

Semigroups for which s < w0 have been given by Hille and Phillips [1957, XXIII,

16], Foias [1973], Zabczyk [1975], Greiner, Voigt and Wolff [1981], Wolff [1981],

Nagel [1982], and Hoppen [1985]. In each case, the spectrum, of the generator could

be computed, but not the spectrum of the semigroup; the type of the semigroup was

computed from the definition. In this article we present an example of a semigroup

with i < w0, for which the spectra of both the generator and the semigroup can be

computed. The example incorporates aspects of the examples of Foias and Zabczyk.

This research was motivated by our work in linear transport theory, where SMT

plays an important role in the determination of the asymptotic behavior of particle

distribution functions; see Kaper, Lekkerkerker and Hejtmanek [1982, Chapters 12

and 13], Greiner [1982], Voigt [1984], and Kaper and Hejtmanek [1984]. General
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references for the theory of linear semigroups are Hille and Phillips [1957], Davies

[1980], Goldstein [1983], and Pazy [1983]; see also Dunford and Schwartz [1958,

§VIII.l], Kato [1966, Chapter X], and Reed and Simon [1975, §X.8]. We shall make

use of an SMT-related result of Gearhart [1978]; see also Herbst [1983], Howland

[1984], and Pruess [1984].

2. Definitions and basic properties. Let [Hk: k = 2,3,...} be a sequence of

Hubert spaces and H = ®kK=2Hk. Let Bk g L(Hk) be such that \\Bk\\ = 1 and

o(Bk) = {0}. We define Ak g L(Hk) by the expression

(2.1) Ak = 2triklk + Bk,

where Ik is the identity in L(Hk), and we define the unbounded operator A on

dom A c H by the direct sum

oc

(2.2) A =  0 Ak.
k-2

The operator A is closed and dorn A = {x G H: ¿2kc=2k2\\xk\\2 < oo}. The resolvent

of A, which is given by

cc

(2.3) Ä(A,A)=  ®R(X,Ak),        X<=p(A),
k-2

satisfies the norm identity

(2.4) ||Ä(X,A)||= sup{||Ä(A,A*)||: k = 2,3,...}.

The spectrum of A is easily computed. Because 2-nik G a(Ak) for each k = 2,3,...,

we have 2trik G a(A) for k = 2,3,_For any point À # 2-nik, k = 2,3,..., we

have

(2.5) R(X,Ak) = (X - 2mk)-\lk -(X - 2mkylBk)'\

Because \\Bk\\ = 1 for all values of k, and |X - 2trik\ > 1 + e, e > 0, for all but at

most one value k0 of k, where X - 2trik0 G p(Bk ), it follows that sup{||Ä(X, Ak)\\:

k — 2, 3,...} < oo and, therefore, X g p(A). Hence,

(2.6) o(A)= {2trik: k = 2,3,...},

and 5 = 0.

If X g C and |X - 2wik\ > 1, then \\R(X, Ak)\\ < (\X - 2mk\ - l)"1. If, in addi-

tion, ReX > 1, then \\R(X,Ak)\\ < (ReX - l)"1 for k = 2,3,.... Therefore,

(2.7) ||/?(X,A)||< (ReX-l)"1,        X g C, ReX>l.

It follows from the Hille-Yosida Theorem that A is the generator of a semigroup

W = \W(t): t > 0], with W(t) = exp(At) given by
00

(2.8) rV(t) =  0 Wk(t),       t > 0,
k = 2

where

(2.9) Wk(t) = exp(2Trikt)exp(Bkt).

Clearly, \\W(t)\\ < e' for t > 0, and w0 < 1.
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For special choices of Hk and Bk, Zabczyk showed that ||W(t)|| = e' for t ^ 0.

Foias, choosing different Hk and Bk, showed that eal G a(W(t)) for all a g (0,1).

(Here we have changed the definitions to get agreement with Zabczyk's.) In both

cases, therefore, w0 = 1.

We take the same choices of Hk and Bk as Zabczyk:

(2.10) Hk = Ck,        Bk = mat[bkuy.i,j = l,...,k],

where bk.¡ ¡+x = 1 for / = 1.k — 1, bk.¡ ¡ = 0 otherwise. One verifies that \\Bk\\

= 1, o(Bk) = {0}, and Bk = 0. The resolvent of Bk is given by a finite sum

k -1

(2.11) R(X,Bk)=  Z X-(n + 1)B"k,        XgC, X*0.
M-0

3. Bounds for the resolvent. Our aim is to apply the following theorem of

Gearhart.

Theorem 1. Let W = [W(t): t > 0] be a semigroup with generator A in a Hilbert

space. Then ez e p(W(\)) iff

(i) z + 2-nil g p(A) for all l g Z, and

(ii)sup(P(z + 2irti,A)]\: / g Z} < oo.

Proof. See Gearhart [1978], Herbst [1983], Howland [1984], and Pruess [1984].

Condition (i) is satisfied for any point z G C that is not an integer multiple of

277/'. Condition (ii) requires estimates of the resolvent along lines parallel to the

imaginary axis. It follows from (2.4) and the definition of Ak that

(3.1) \\R(z + 2-nil, A) || = sup{||«(z + 2-ni(l - k), Bk)\\: k = 2,3,...},

whenever z + 2-nil g p(A).

Lemma 2. For all XgC with |X| > 0 and for all k = 2,3...., we have the

inequalities

(3.2) g(|\|,*)<||Ä(X,^)||<A(|X|,*),

Yjhere

g(x,k)

for x > 0 and k = 2, 3,_

/     k \V2 k

Y,x~2j\     .        h(x,k)= zZx~

Proof. The upper bound in (3.2) is trivial. Let ek = (0,... ,0,l)T. The vectors

Bkek, n = 0,..., k — 1, are orthonormal in Hk, so

/ k       V/2

\\R(\,Bk)\\>\\R(\,Bk)ek\\>     L|Xf27       .        D
U-i /
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The functions g and h have the following properties: (i) for x fixed, g and h

increase as functions of k; (ii) for k fixed, g and h decrease as functions of x; (iii)

g(l,k)=\fk, h(l,k) = k; and (iv) for x > 1, limk^x g(x, k) = (x2 - iyl/2,

um/t-a> h(x, k) = (x - l)"1. These properties imply that, for fixed k,

(3.3) llÄiX.Äj^lXr^l + o(|Xr'))    as|X|-»oo,

(3.4) ||Ä(X,*t)HXf*(l + 0(|X|))    as|X|->0.

Furthermore, for k = 2,3,...,

(3.5) \\R(X,Bk)\\> }/k    for all |A|< 1,

(3.6) ||/{(X,Bt)||< (p- I)'1    for all | A| > p > 1.

In the next section we apply these estimates to calculate the supremum in (3.1).

4. Spectrum of the semigroup. Let S = U„,eZ(ö + 2-nim), where D is the

punctured unit disc, D = {z g C: 0 < \z\ < 1}. Clearly, S C p(A). If z g S, then

there exists, for every k g (2, 3,...}, an / g Z such that \z + 2-ni(l - k)\ < 1.

Therefore, using (3.5), we see that

sup{p(z + 2-ni(l- k),Bk)\\: le Z, k = 2,3,...} = oo,

and Theorem 1 yields ez g a(W(l)).

If z g C\ S, then \z + 2-ni(l - k)\ > dist(z, {2-nim: m g Z}) = p > 1 for all

k = 2,3,... and / g Z. Therefore, using (3.6), we see that

sup{p(z + 2-ni(l- k),Bk)\\: /g Z, k = 2,3,...} < oo,

and Theorem 1 yields e: g p(W(\)).

Combining these results, we find

(4.1) a(W(l))\{0} =ea(À)u{e::0 <|z|< 1}.

Here, ea(/l) consists of the single point {e:: z = 0}.

Let t > 0. Then Theorem 1 implies that e'2 g p(W(t)) iff (i) z + (2-n/t)il g p(A)

for all / g Z, and (ii) sup{||Ä(z + (2-n/t)il, A)\\: / g Z} < oo. Here,

(4.2) \\R(z + (2ir/t)il, A) || = sup{||/?(z + 2wi(/// - A),Bj||: Ä: = 2,3,... }.

We distinguish two cases: t rational and t irrational.

Let / be rational, / = p/q. Then

(4.3) o(W(p/q))=(o(W(\/q)))P.

If z g S and |z| < 1, then there exists, for every k g {q, 2q,...}, an / g Z such

that \z + 2-ni(ql — k)\ < 1. Therefore,

sup{p(z + 2m(ql- k),Bk)\\: l g Z, k = 2,3,...} = oo,

and e" g a(W(t)). A similar procedure yields e': g a(W(t)) if z g 5 and |z +

2-nim\ < 1 for some m g Z.
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If z G C\S, then \z + 2-ni(ql - k)\ > dist(z, [2-nim: m g Z}) = p > 1 for all

k — 2,3,... and / G Z. Therefore,

sup{||/v(z + 2iri(ql- k),Bk)\\: I g Z, fc = 2,3,... } < oo,

and e'; g p(W(t)).

Summarizing, we have

(4.4) a(W(t))\{0} = eaWu{ez':0 <\z\< 1},

whenever t is rational. If t = p/q, where p and q are relatively prime, then ea{A)l is

the finite set {e2': z = 2-nik, k = 0,..., q - 1} of q points on the unit circle.

Let t be irrational. The sequence [l/t: I = 1,2,3_} is uniformly distributed

modulo 1; cf. Cassels [1957, IV]. Hence, for every z = a + 2-niß with 0 < \a\ < 1

and 0 < ß < 1, there exist infinitely many k e {2,3_} and / g Z such that

\l/t-k + ß\<(l -a2)'72.

Each such pair (Ä:,/) generates a point z + 2iri(l/t - k) that belongs to D and

therefore to 5, so e': g a(W(t)). Furthermore, e"M" is a dense set on the unit

circle. Because a(W(t)) is closed, it follows that

(4.5) o(rV(t))\{0} = [e,:: |Rez|< 1,0< Iraz < 277},

whenever / is irrational.

Thus, a(W(t)) is known for all t > 0.

5. Remarks. Because —A also generates a semigroup, /I is the generator of a

group,and

(5.1) ||Ä(X,i4)||< ( | Re A | - l)"1,        XeC,|ReX|>l.

Furthermore,

(5.2) ||/v(X,^)||<|ImXr1,        XGC,ImX<0.

Hence, ¡A also generates a semigroup.

The graph of ||Ä(X,A)||, X g p(A), has the following qualitative behavior. As

|Re X| -» oo, it decreases to zero like |ReX|_1; as ImX -* -oo, it decreases to zero

like |ImX|_1. It is bounded in the strip {X G C: |ReX| ^ 1, ImX > 0}, except in the

discs D + 2-nik, k = 2,3,..., where \\R(z, A)\\ = \z - 2-nik\-k(\ + 0(\z - 2-nik\))

as z -> 2-nik.

If A is rotated over an angle <¡>,0<cb< -n/2, then we obtain a new operator e'^A

for which SMT holds. This result is verified most easily from Theorem 1 if one uses

the above qualitative results about the graph of ||/?(X, A)\\.
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