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THE ESSENTIAL BOUNDARY OF CERTAIN SETS

A. M. BRUCKNER1, ROY O. DAVIES AND C GOFFMAN1

Abstract. The essential boundary of a measurable set is related to the de Giorgi

perimeter and was introduced by Vol'pert in his "improvement" of Federer's work.

For a totally disconnected compact set of positive measure in n space the essential

boundary can be of Hausdorff n — 1 dimension but cannot have o finite (n - 1)-

measure.

Let E c R" be a measurable set with respect to Lebesgue measure. It is said to be

of finite perimeter if all the partial derivatives px(A),..., ¡jl„(A) of its characteristic

function x are totally finite measures over the Borel sets A c R". It is well known

that jtt, = Pi(R") = fv¡, where v¡ is the infinum of the variations in x¡ of all

functions equivalent to x and the integration is over the (n — l)-space orthogonal to

the x¡ axis, Ox¡. The value of the perimeter is then the variation measure of the

vector valued measure (px(A),..., pn(A)), evaluated for R".

It was shown by Fédérer [1] that the perimeter is equal to the (n — l)-measure of

a set that he called the reduced boundary of E, consisting of those points at which a

certain generalized normal exists. Specifically, a point p is in the reduced boundary

of E if there is an (n - l)-plane -n through p such that the part of E on one side of

77 has density 0 at p, and the part of CE on the other side of -n has density 0 at p.

(The rV-measure Xk(E) of a set in R" will mean the /:-dimensional Hausdorff

measure, normalized so that the rV-dimensional unit cube has measure 1.) Vol'pert

[2] showed that in the result the reduced boundary may be replaced by the essential

boundary de(E), consisting of those points of R" which are neither points of density

1 nor points of density 0 of E. Clearly, the essential boundary of E contains the

restricted boundary. Vol'pert's remarkable theorem asserts that, if E has finite

perimeter, then the Hausdorff (n — l)-measure of the restricted and essential

boundaries are equal. The Lebesgue theorem guarantees that de(E) is of «-measure

zero, but in its perimeter role ae(E) has more of an (n — l)-dimensional flavor, and

evidently coincides with the ordinary boundary d(E) when this is a sufficiently

smooth surface.

Going to the opposite extreme, in this note we shall discuss the possible nature of

de(E), with respect to (n - l)-measure, when £ is a nowhere dense set of positive

measure in R".
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In the case n = 1, it is easy to see that ae(E) is then of non-a-finite 0-measure; in

other words, it is an uncountable set. In fact, since there exists an interval in which

the relative measure of E is greater than \, while intervals disjoint from E are dense

in R, by continuity we can find two disjoint compact intervals 1(0), 1(1) such that

0 < XX(E n 7(0)) = XX(E n 7(1)) = Ux(7(0)) = U,(7(l)) < i

Similarly, inside each /(/'), /' = 0, 1, we can find two disjoint compact intervals

/(/', 0), /(/", 1) of length less than \, in each of which the relative measure of E is

again I, and so on. Now de(E) evidently contains the uncountable set

00

nU{'(ei....,O:*p-0orl}.
r-l

In R", n > 2, a nowhere dense closed set may be of positive «-measure and yet

have finite perimeter. Indeed, let a0 denote the open unit ball, and let ax, a2,..., be

a sequence of disjoint open balls in a0 such that Um>1am is dense in o0, but of

smaller «-measure than a0, and Em>xcm < oo, where cm is the circumference of am.

Then F = a0\\Jm>xam is a nowhere dense closed set of positive «-measure;

however, it is clear that for the characteristic function of F we have u., < £m>0cm

for i = l,..., «, so that F has finite perimeter. It can of course be established

directly that the (« - l)-measure of de(F) is finite but this is appreciably more

difficult.

As can be seen from Theorem 3 below, it is possible for a set such as F to have

finite perimeter only because (although nowhere dense) it is far from being totally

disconnected; indeed, in a certain sense, for most straight lines that intersect F in

positive 1-measure, the intersection must consist largely of complete intervals. In

fact, we shall show that if F is any closed set, then on almost every straight line in

any given direction the essential boundary de(F) includes an important part of the

topological boundary of F, relative to the line. Consequently, when F is totally

disconnected the set de(F) must be of non-a-finite (« — l)-measure.

We first point out that in this case, 3^(7*") is not necessarily of Hausdorff

dimension greater than « - 1.

Theorem 1. 7« 7?" there exists a totally disconnected compact set F of positive

n-measure for which de(F) is of Hausdorff dimension « — 1.

PRoof. Let C denote the «-dimensional unit cube [0,1]". Let 8X,62,... be a

sequence of positive numbers such that the series Y.r((2r2 + \)0r)a converges for

every a > 0 and Hfir < 1/«; for example, let 0r = l/«(2r2 + l)2r.

Let qx,q2,... be an enumeration of all rational numbers in [0,1]. Let Ir denote the

open interval (ar, br) with center at qr and of length 6r. Let SrX denote the slab

Ir X [0,1] X • • • X [0,1], and define Sri similarly for i = 2,..., « as the product of

the interval Ir placed on the axis Ox, with a unit cube in the («-l)-space orthogonal

to Oxl; let Sr - Srl U • • • USrn and F = C\Ur Sr. Then F is a totally disconnected

compact set with

\„(F) > x„(c) - £\„(s, n c) > l - «E0r > o.
r r
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Now let Tri denote the slab consisting of all points at a distance less than r26r

from Sn, put Tr = Trl U • • • U Trn, and let 77 = limsup(7; n C). Then 77 is of

Hausdorff dimension « — 1, because for every R we have 77 c Ur>R(Tr n C), for

each r, / the set Tri n C can be covered by 0([\/(2r2 + 1)0,.]""l) cubes of side

(2r2 + l)6r, and for everyß > « - 1,

l \ "
1   {(2r2 + \)oy ^0    asR -» oo.

^\(2/-2 + iR,

It will follow from Theorem 3 that 3e(F) has non-a-finite (« — l)-measure, so it is

now enough to show that de(F) c 77, and hence enough to show that if x g F\ H

then the density of (JrSr at x is zero. Let x = (xx,..., xn) G F\77. It is enough to

show, for example, that the density of (JrSr at x in the orthant {y: y¡ > x¡ for

/ = 1,...,«} is zero.

Given e > 0, choose R so large that ¿Zr>Rl/r2 < e/n. Since x £ 77, we can

choose Q so that x í \Jr>0Tr, and we may suppose Q ^ R. Therefore,

r>Q '

We can choose Ô > 0 so small that U^Ti15r does not meet the cube

Q = {j: 0 < _y, < je, < o for / = 1_, «}.

Given 0 < « < o, we shall show (establishing the conclusion) that

(2) cAnUs,U*MQ).

Consider any slab Sri such that Sri n Ch ¥= 0 ; then r > Q. Without loss of

generality we may suppose that ; = 1. Because x £ Trl, but SrX n C ¥= 0, we have

Xj < a,. - r2ör < ar < xx + h, and therefore

Xi[(Xl,Xi + «) n /,] < Xx(lr) = dr= (l/r2)[ar-(ar - r20r)] < (\/r2)h,

from which it follows that \n(Ch n Srl) < (l/r2)X„(CÄ). By (1) this implies the

required result (2).

We proceed to show that for a totally disconnected compact set K of positive

«-measure the set oe(K) is of non-a-finite (« — l)-measure. We first obtain a result

on arbitrary measurable sets. Let E c R" be measurable with Xn(E) > 0. We adjust

E in the xx direction as follows: on every open interval in any line parallel to Oxx, if

E has zero linear measure in the interval, transfer the entire interval to CE, and if

CE has linear measure zero in the interval, place the entire interval in E. By the

linear density theorem, this adjustment only changes E by a set of «-measure zero.

Such an adjusted set may be called ^-smooth. Thus, if E is ^-smooth, then for

every open interval 7 situated in a line parallel to Oxx we have that A1(7i'n7)=0

implies E n 7 = 0 and XX((CE ) n 7) = 0 implies (CE) ni = 0.

In what follows it will be convenient to regard a typical point in 7?" as (x; y)

where x g R and y g T?"-1. For any set E c R" and any y g T?"-1, by 3(£' ) we

shall mean the ordinary boundary in R of the section Ey = [x: (x; y) g E), that
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is, 3(£')= Ey Pi (Ä\7iv'). By d(E,p) and d(E,p), where Tic 7?" and p g R",

we mean the respective limits as ô -> 0 + of the infinum and supremum of

{X„(E n S)/X„(S): S^y(8,p)} where Sf(8, p) is the collection of all open

cubes with sides parallel to the axes containing p and with side of length less than 8.

A subset A of a set B is said to be residual in B if B \ A is the union of countably

many sets each of which is nowhere dense in B.

Theorem 2. If E is any xx-smooth measurable set in R", then for almost all

y g R"-1 the set

{x: d(E,(x; y)) = 0 and d(E,(x; y)) = l) n(Ey)

is residual in d(Ey).

Proof. It is sufficient to prove that for almost all y e R"~l the set {x:

d(E,(x; y)) = 0} n d(Ey) is residual in 3(£v'), because this same result applied to

CE will show that {x: d(CE,(x; y)) = 0} n d(CE)y is also residual in d((CE)y) =

3(£>) for almost all y g R"~\

Given any positive integer r, let A(r) denote the union of all open cubes C such

that A„(C) < r~" and Xn(E n C) < r'xXn(C). It will be enough to show that for

almost all y G T?"-1 the set A(r)y n 3(£v) is dense in 3(£v'), since A(r) is open

and therefore d(Ey)\A(r)y will then be nowhere dense for each r, and conse-

quently {x: d(E,(x; y)) > 0} n d(Ey) is of the first category in d(Ey).

We henceforth regard r as fixed and write A for A(r). Suppose, if possible, that

for a set of y g T?"-1 of positive outer (« - l)-measure the set Ay n d(Ey) is not

dense in 9 (£•''); we shall derive a contradiction. For each such y there exists a

nonempty open interval 7 c 7? with rational endpoints such that

(3) Ind(Ey)±0    and    I n d(Ey) n Ay = 0 .

Hence there exists a set Z o R" l of positive outer (« — l)-measure and a fixed

nonempty open interval 7 c R such that (3) holds for all y G Z. Whenever (3)

holds, we have 7 n (CE)y # 0 and therefore A^[7 n (Œ)■"] > 0, because E is

x,-smooth. Since almost all points of CE are points of density 1 for CE, it follows

that for almost every z g Z there exists ie/ for which d(E,(x; z)) = 0. Choose

any such point z g Z which is also a point of outer (« - l)-density 1 for Z, choose

« > 0 so small that X*_X(Z n Tí ) > (1 - ir"1)XH_1(JP) for every open cube 7< c

7?""1 of side less than «, containing z, and let x0 g 7 be such that <7(7i, (x0; z)) = 0.

Let C0 be an open cube of side less than min(«, r~l) with (jc0; z) g C0, and

(4) xn(Enc0)<W-xXn(c0),

and C0 = y0 X K where 70c/ and K c 7?"_1; thus z g 7C Since z g Z, the set

7 n 3(£v) is nonempty; let x' be any point of it. Translate J0 a distance t (to the

left or right) to a position /, c 7 for which x' g /(. Since (x'; z) £ ^4, the cube

C, = J, X 7C satisfies X^TTnCJ^r^A^C,). In view of (4) there exists a least

value of t > 0 for which the last inequality holds; denoting it by n, we have

(5) X„(E n C) = r-xXn(Cv)
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and

(6) A„(£nCT)<r1A„(CT)    forO<r<r,.

By (4) and Fubini's theorem, Xn^x(W) < \r-xXn_x(K), where W = {y g AT:

(C0n CE)> = 0 }. Now consider any y G K\ W such that (C, ft E)y * 0. There

is a point of d(Ey) between any point of (CE)y and any point of Ey, and therefore

there exists x G 7 such that x G 3(£v) and (x; y) G CT where 0 < t < r/. Conse-

quently A„(£ Pi CT) < r~lXn(Cr), by (6), and so CT c ,4. This would contradict (3)

if y belonged to Z, so we have shown that {y: (C„ n £)' * 0} C W U (7v \ Z).

Since A*_!(Zn 7()> (1 - ^"^„^(Tí ), it follows that

M,-i({^:(Cnn£)v'=0))>(l-r-1)A„„1(7i)

and hence by Fubini's theorem A„(£ n C,,) < r'^A^C,.); this contradiction to (5)

completes the proof.

Consider the special case where £ is a totally disconnected compact set in R" of

positive «-measure. We adjust £ as above to an x,-smooth set. In this case, the

Xj-smooth adjustment is merely a reduction of £ by a set of measure zero since no

linear interval intersects CE in a set of 1-measure zero. If £* is the x,-smooth

reduction of £, then for almost all y G R"'1 the set {x: d(E,(x; y)) = 0 and

d(E(x; y)) = 1} is residual in (£*)v since the compactness of (£*)■'' implies

(£*)' = 3((£*)v). Moreover, the set of y for which (£*)' is uncountable has

positive (« — l)-measure. We accordingly have the following corollary to Theorem 2.

Corollary 1. If E is a totally disconnected compact set of positive n-measure, then

(deE)y is uncountable for a set of values of y of positive (n — \)-measure.

It is rather easy to see that the set 3e£ of Corollary 1 is of non-a-finite

(« - l)-measure. For this purpose, let T be a set in (« - l)-space which is of finite

outer Hausdorff measure, i.e. A"0_1(£) < oo. Let N be a positive integer. For every

y G T, let xx(y) < x2(y) <  ■ ■ ■  < xN(y) be N reals, and let

8(y) = min(x,(y)-x,„x(y)),        i = 2,...,N.

For every 6 > 0, let Ts c £ consist of those y for which 8(y) > 8. For each 17 > 0,

there is a o > 0 such that X"0-X(TS) > X"^1^) - n. For each y G T, let S(y) =

{(xx(y), y),.. .,(xN(y), y)}, let S = UyeTS(y) and Ss = U,*nS(y).

For each covering of 5 by balls of radius less than 8/2, the horizontal line at y

meets N disjoint balls of the covering, for every y g Ss. This implies that X"^1^) >

N(X"Q-l(T) - n). Since this holds for every v > 0, we have X"Q-X(S) > NX%-\T).

Suppose now that T c Rnl is measurable and A"_1(£) > 0. For each y e T, let

S(y) be uncountable and let S = UySTS(y). Suppose A c S, with X"0'X(A) < 00.

By the above, A O S(y) is finite for almost all y g T. Accordingly there is no

sequence [An] of subsets of S such that S = l)nAn and X"0'x(An) < 00, « = 1,2,_

Thus the set deE of Corollary 1 is of non-a-finite (« — l)-measure.
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From Theorem 1 and Corollary 1 we now obtain

Theorem 3. If E c R" is a totally disconnected compact set of positive n-measure

then deE is of non-a-finite (n — \)-measure, but there are examples of such sets for

which the Hausdorff dimension of öeE is « — 1.

We benefited from very useful discussions with J. M. Marstrand at an earlier stage

of this work.
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