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ABSTRACT. We give a substitute for the Whitney decomposition of an ar-
bitrary open set in R? where squares are replaced by rectangles. Then we
deduce the L*°-BMO boundedness of certain singular integral operators de-
fined on product spaces.

In [2] it is shown that BMO(R x R), the dual of H!(R x R), can be characterized
in terms of Carleson measures on R2 x RZ [1]. Let 2 be a bounded open set in
R? and S(12) be the shadow region over (1, that is, the set of (z1,z2,t1,%2) such
that [z1 — t1,21 + t1] X [z2 — t2, 72 + t2] C 0. Let ¥ € C(R) be supported on
[-1,1], such that [¢dz = 0, and let Q; = Q:, ® Q;, be the convolution with
(l/tltz) (z1/t1)¥(z2/t2). Then a function b € LZ .(R?) is in BMO(R x R) if and
only if there exists a constant Cp such that

(1) /S o Qe oy dzy T

and then Cp =~ ||b]|smo- The problem in proving (1) for a given function b is
that one has to consider all possible bounded open sets and not simply rectangles.
However, (1) can still be checked in special cases, using the following proposition.

dt1 dtz <

PROPOSITION 1. Let () be a bounded open subset of R?, let {Rk,k € K} be the
collection of marimal dyadic rectangles contained in (1, and let Ry = I x Ji for
allk € K. There exist dyadic intervals {I,k € K} such that I C Iy, for allk € K
and such that for all increasing functions w:{277,5 € N} — |0, +00)

(2) U e x Ji| < 210
keK
and
3) S IR |w<”’°'> <2 ff )| 191
AR T Y A P

An alternate way to state this proposition in nondyadic language is the following.
For all (zy,t1) € R% let E;,;, be the open set {z2,[z1 — t1,21 + t1] X {z2} C O}
and |J, IL,, be its decomposition in connected components.
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PROPOSITION 2. There exists a function t}(z1,t1) such that

U ]171 —tl,zl +t [ X xltl _<_ 8|Q|

z1,t1,l

(4)

and such that, for all w:[0,1] — [0,+00) increasing,

(%) / /tlD Ll ( )dz;ftl <2>U01 "@d&] )

Propositions 1 and 2 are formally the same and so are their proofs. Thus we
shall only prove Proposition 2.
The function ¢} is simply defined as

inf{t] > t1,] Bayy N 1L, | /1

| <1/2}.

z1ty

To show (4) we observe that if t; < t}, then |E;,p» NIL, | > 3|1, |, and,
therefore, since Jz1 — t, 21 +t)[ XEg,4 C Q

[z1 —t, 1 + th[ x I e, NQ] >3 L2t x | a:1t1|

If we let Q1 be U,, ;, Je1 — 84,21 +t L[x IL ,, and if * denotes the strong Hardy-

Littlewood maximal functlon then 1 31X, < X which implies (4).
To estimate the Lh.s of (5) we rewrite it as

(6) / / / | t I ! dt21 dtl d:l?l,
z Jt T >t i ty

assuming that w is in C1[0, 1], Wthh is no loss in generality. If ) > ti, then
|Egye, NIL,, | < 3IIL 4, |, s0 that |IL . \ Eg 4| > 3|IL . |. Hence, (6) is less than

AR
(7) /;,;1 [1 ;/ﬂ,"l>t’l [/ 121\E=1tl 2dfli2J w <t') t/2 —Ldt; dz;.

z

For (z1,z2) € Q fixed, let
Ti(z1,22) = sup{s1, [1 — s1,21 + s1] X {z2} C 0}.
If 22 € Il 4, \ Eq,1y, then t; < Ty(zy,22) < t). Hence, (7) is less than

2/ / w’( )d,t; dz; dz,,
(z1,22)€Q |Jt1 <Ti <t t)t

which is exactly 2[f0l w(8)%] x |Q1].

As we said, Proposition 1 is nothing but Proposition 2 reformulated in dyadic
language. It also has the advantage of extending immediately to a product of type
R™ x R™. For simplicity we stick to the case of R x R and consider the following
problem. Let T; and T, be two Calderon-Zygmund operators as defined in [3] or
[5]. Then Ty ®T? is trivially bounded on L?(R?) and on LP(R?) for all p €]1, +00].
Moreover, we have the following.
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PROPOSITION 3. Let Ty and Ty be two Calderon-Zygmund operators acting on
L%(R). ThenT1®T, extends to an operator bounded from L*(R?) to BMO(RxR).

As is readily seen, the proof we give below requires only a very weak smoothness
assumption on the kernels of 71 and T,. Let T be a Calderon-Zygmund operator
acting on L2(R). Then Q;T is well defined for all t > 0 and has a kernel (Q;T)(z, y),

given when |z — y| >t by

[ e - 0K ) - Kay)da
where K is the kernel of T. What we shall need is that for allz € R and t > 0,

®) | QuD@wldy <o)
to<|z—yl/2

and

& [ e < ()

. 1 dé
with “’T(‘S)T =C(T) < +oo.
0
This will certainly be the case if the function w, defined as

w(8) =sup | K(z,9) - K(y)] dy,
le—y|>2|z—2'|/6

z,x’

satisfies w(1) < 400 and the Dini condition f; w(6)/6dé < +oo.

We should also remark that this proof extends with minor changes to the class
of singular integral operators defined in [4] or [6].

To prove Proposition 3 we choose a bounded open set ) in R2?, a function
b € CP(R?) such that ||b|cc < 1, two Calderon-Zygmund operators Ty and T
satisfying (8') and (8”) with a constant 1 and such that ||Ti||2,2 + [|T2||2,2 < 1.
Then we must show that

(9) ]S 1 100Qu, S dey ey

where S denotes Ty ® Ts.
Recall that, by Plancherel’s theorem, if f € L2(R?),

// |Qt1Qt2f| dz; dz 2dt1 dt2
RZ xR

Applying this to f = S(bxnz), where Q2 = Upcq, 2R, and using
1113 < 1I1S13,2118l1% 92| < C|0,

we see that we may as well suppose that b is supported outside of {15.
For each (z2,t2) € R let F i, = Ulz1 — 2t1, 1 + 2t}], where the union is over
those (z1,t1,1) such that [zg — to,z2 +t2] C IL ,¢,- Observe that

U Fyppt, X |22 — 2t2, 29 + 2t2[ C Q.

z2,t2

dt1 dt2 <

< CIIfII3.
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We now split b as bl,;, +b2,,,, as in [1], but in a different way. Here bl ,, (21, 22) =
b(z1, 22)XF,,., (21), so that by ;. (21,22) = 0 for all 2 if |22 — z2| < 2t2, since b is
supported out of {15.

In order to prove (9) with bl ,, instead of b, observe that [Q¢, Q¢, Sb},.,](x1,72)
can be written as

[ (QuTn ) @uTiblyy(2)l(mr) dan
|z —22|>2t2
Minkowski’s inequality implies that

' dz dt
J[10u@u S8, o ) L

is less than

1/2 2
[/lmz_zzlzmI(QtzT2)($2,z2)| |/ 10uTitt a2 d@} |

Using Cauchy-Schwarz, (8') and the L2-boundedness of T, we see that this integral
is dominated by

(10) [ 1@ues )l de.
(:u,zz)esuppbmz,2
We integrate (10) with respect to dzydto/ty and fix z2 and 2;. Observe that

(21,22) € Qg if 21 € Fyye, for some ¢ > 0. Therefore, to prove (9) with bl
instead of b it is enough to prove

(1) /| 1Quresz)lan T2 <,
(22,t2)EAzy 2,
where
Agyzy = {(22,t2), |72 — 22| > 2t3, (21,22) € suppbl ., }.
Let 7(21,2) = sup{ts, 21 € Fr,1,}. If (21,22) € suppbl,,,, then tz < 7(z1,2).
On the other hand,
{z1}Xx |zg — 21,29 + 27| C Usztz X |zg — 2t2,z2 + 2t2[ C Q.
ta

Therefore if (z1,22) € suppbl,;,, (21,22) € Q5 and |z — 22| > 27, so that if
(22,t2) € Azyzy, then ta <7< rx2 — 23|/2. This, together with (8”), implies (11).

The proof of (9) with b2_, instead of b is along the same lines. As in [1] we
rewrite the Lh.s. of (9) as

dzo dt dzy dt
JI ( [/ 190 Qu Sty (a1,22) 5 D T
(T1,t1) S(1; ) ;

2t2

1t1

Recall that b2 ,, (21,22) = bxry,,, (21). If (z2,t2) € S(IL,;,) and 2y & Fyy¢,, then,
by definition, |z; — 21| > 2t’1(a:1,t1) Therefore, b2,,,(21,22) = 0 if |21 — 21| <
2ti. Now we develop in the variable z; as we did before in the variable 2o, use
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Minkowski’s inequality in z;, the L®°-BMO boundedness of T3, and finally we are
reduced to estimating

2 dz; dt
v/v/l: / |I¢l51t1||(Qt1T)I1z1'dzl] _il:l_l
1 Jlzi—z1]>2t) h

(z1t1)
By (8”) and (5) this is less than C|(}|. Proposition 3 is proved.
Recall that in one variable one associates to any function ¢ € C§(R) with
[dz = 0 a Littlewood-Paley G-function defined by
+o0 at]*?
61 = | [ w0l
By Plancherel’s theorem ||G f||2 < C||f||2. Using vector-valued singular integral op-

erators, we see also that ||Gf||smo < C||fl|lBmo- It is known that ||(Gf)?||Bmo <
C||fIl3mo- We shall generalize this latter fact to the product situation.

PROPOSITION 4. Lety € CP(R) with [y dz =0, and let Q; be the convolution
with (1/t)(-/t). For all f € L2 .(R?), let

+00 +o0 dt dt 12
T A

Then ||(Gf)*|leMorxRr) < Cllf|BMorxR)-
To prove this proposition it is enough to show that the operator Ty defined for
f € C&°(R?) by

+o0 p+oo
Ty(g) = /0 /0 (@@ /)(@,Qug) 1 %2

for g in C§(R?) extends to an operator bounded from BMO(R x R) to itself with a
norm at most C||f||smo. Actually it is rather easy to see that Ty is a CZO on RxR
as defined in [6], to which the T1-theorem of [6] applies and also Proposition 3.
Knowing that Ty maps L* to BMO, it remains to show that Ty H1,TfHo, Ty Hy Ho,
where H; and H; are the partial Hilbert transforms, also map L* to BMO. Then
the decomposition of BMO functions in terms of L* and partial Hilbert transforms
will imply that Ty maps BMO to itself. Now the fact that Ty Hy, Ty H2, Ty H1H2
are CZOs to which Proposition 3 applies follows easily from the fact that the kernel
of Q:H has the smoothness and decay properties of the Poisson kernel p.
Another approach to the L2-boundedness of Ty uses the technique of [3, Chapter
VI]. This is more powerful since one can also prove vector-valued inequalities. Let

V be the Hilbert space
72 Ry, S8
t1 to
Let g be a V-valued C3°(R2) function. Then [T}(g)](z) is defined as
[(Qtl Qtz f)(x)][(Qh Qt2g(" t1, tQ))(z) YR
o Jo t1 t2

Then T is also bounded from L% (R?) to L?(R?) and from BMOy (R x R) to
BMO(R x R).
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