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COINCIDENCE THEOREM AND SADDLE POINT THEOREM

H. KOMIYA

ABSTRACT.  We discuss Browder's coincidence theorem and derive a saddle

point theorem from it.

We always assume the Hausdorff separation axiom in topological structures. Let

X be a topological space and let Y be a nonempty subset of a linear topological

space F. By a multi-valued mapping A of X into Y, we mean that to each point

x of X, A assigns a subset A(x) of Y. A multi-valued mapping A is said to be

convex-valued (resp. closed convex-valued) if A(x) is nonempty and convex (resp.

nonempty, closed and convex) for each x in X. A multi-valued mapping A is said

to be upper semicontinuous if for each point x of X and each zero-neighborhood

V of F, there exists a neighborhood U of x such that A(u) C A(x) + V for all u

in U. The upper semicontinuity of A is equivalent to the closedness of the graph

Gr(^4) = {(x, y) £ X xY:y £ A(x)} of A in X X Y, if A is closed-valued and Y is

compact.

There exist two fundamental fixed point theorems for multi-valued mappings.

One is Kakutani-Fan's fixed point theorem:

Let X be a nonempty compact convex subset of a locally convex linear topological

space. Let A be an upper semicontinuous and closed convex-valued mapping of X

into X. Then A has a fixed point, that is, a point xo of X such that xo £ A(xq).

The other is Fan-Browder's fixed point theorem:

Let X be a nonempty compact convex subset of a linear topological space. Let B

be a convex-valued mapping of X into X such that B~x(y) = {x £ X:y £ Bx} is

open in X for each y in Y. Then B has a fixed point.

Kakutani and Fan's theorem has been established by Kakutani [8] in case X is

contained in a finite dimensional space, and Fan [4] has generalized it to the present

form. Fan and Browder's theorem first appeared in [5] implicitly, and the present

form is found in [1].
Browder [2] has combined the two fixed point theorems and obtained a coinci-

dence theorem [2, Theorem 3]. We point out that Browder's coincidence theorem

is implicitly contained in Ha [7, Theorem 3] and obtain a generalization of the

coincidence theorem with a simple proof using Ha's lemma.

THEOREM l. Let X be a nonempty convex subset of a linear topological space

E and let Y be a nonempty compact convex subset of a linear topological space F.

Let A be an upper semicontinuous and closed convex-valued mapping of X into Y.
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Let B be a convex-valued mapping of Y into X such that B~l(x) is open in Y

for each x in X. Then there exist a point xq of X and a point yo of Y such that

yo 6 A(xo) and x0 £ B(y0).

PROOF. By [2, Proposition 1] there exists a continuous mapping p of Y into

the convex hull 5 of a finite number of points of X such that p(y) £ B(y) for each

y in Y. Then there exists a point xq of S such that xo £ p(A(xo)) by [7, Lemma

2], and hence there exists a point j/o of A(xo) such that xq = p(yo) £ B(yo).

It is easily seen that Fan and Browder's theorem is derived from Theorem 1 by

setting X = Y with E = F and A the identity mapping of X. Moreover we can

easily derive Kakutani and Fan's theorem from Theorem 1:

Let X = Y with E = F and Bv(y) - {x £ X: (x, y) £ A + U x U} for each
y in X and each open convex zero-neighborhood U of E, where A is the diagonal

{(x,x):x £ X} of X. Then there exists a net {(xrj,yu)} directed by the system

of open convex zero-neighborhoods of E such that (xu,yu) belongs to the set

Gr(A)f)Gr(Bu) for each U. Since Gr(A) is compact, there exist a point (xo,yo) of

Gv(A) and a subnet of {(xu,yu)} converging to (xo,yo)- Then xq must be equal

to yo by the definition of B\j, and hence we have xo £ A(xq).

We can also derive from Theorem 1 the following theorem due to Simons [10]

which has generalized and unified fixed point theorems for multi-valued mappings

due to Browder [2], Fan [6], and Takahashi [11, 12].

THEOREM 2 [10, THEOREM 4.5]. Let X be a nonempty compact convex

subset of a linear topological space E and let B be a convex-valued mapping of X

into the topological dual space E' of E such that B~x(x') is open in X for each x'

in E'. Then there exist a point xo of X and a point x'Q of E' such that x'0 £ B(xq)

and (xo)XÓ) = maxzex(x,x'0).

PROOF. Let A(x') = {x £ X:(x,x') = maxxeX(x,x')}. We endow E' with
the strong topology, that is, the uniform convergence topology on the bounded sets

of E. It is easily seen that A is convex-valued. Let {(xa,x'a)} be a net in Gr(A)

converging to a point (x, x') of Xx E'. Since the net {x'a} converges to x' uniformly

on X, the net {(xa, x'a)} converges to (x, x'). Hence for any point u of X, we have

the inequalities

ix,x') = \im(xa,x'a) > lim(u,x'a) = (u,x').
a a

Hence (x, x') belongs to Gr(A) and Gr(A) is closed. Therefore A is closed convex-

valued and upper semicontinuous. Then we can apply Theorem 1 to the multi-

valued mappings A and B and obtain the desired result.

We finish our discussion with a saddle point theorem which can be derived from

Theorem 1. A real-valued function / on a convex set X is said to be quasi-convex

if the set {x £ X: f(x) < r} is convex for each real number r. If -/ is quasi-

convex, then / is said to be quasi-concave. Let {fv:v G 7} be a family of real-

valued functions on a topological space X. The family {fv:v £ 7} is said to be

equicontinuous if for any point x of X and any positive number 6, there exists a

neighborhood U of x such that \fv{v) — fu(x)\ < 6 for all u in U and v in 7. We

denote by C(X) the Banach space of all real-valued bounded continuous functions

with the uniform norm.
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THEOREM 3. Let X be a nonempty convex subset of a linear topological space

and let Y be a nonempty compact convex subset of a linear topological space. Let

f be a real-valued continuous function on the product space X x Y of X and Y

which is quasi-concave in its first variable and quasi-convex in its second variable

and satisfies supxe^ minyGy f(x, y) < +00. Let the family {f(x, ■): x £ X} of real-

valued functions on Y be equicontinuous and closed in the Banach space C(Y).

Then f has a saddle point (xo,yo), that is, (xo,yo) satisfies the equations

max/(x, yo ) = f(x0,yo) = min f(x0,y).
IËA yÇ.Y

PROOF. By the equicontinuity of the family {f(x, -):x £ X} , for any y in F
there exists an open neighborhood Vy of y in Y such that \f(x,v) — f(x,y)\ < 1/2

for all v in Vy and all x in X. Then there exists a finite subset Z of Y such

that Y = \J{VZ: z £ Z} by the compactness of Y. On the other hand, we have

minyey supx€X f(x, y) < +oo by [7, Theorem 4], and hence there exist a number

M and y0 in Y such that f(x, yo) < M for all x in X. Let Pi = {z £ Z: y0 £ Vz}
and

Pl+i = [z £ Z: Vz D \J{Vw:w £ PJ ^ 0} \ \J{P3:1 < j < i}   for ¿ = 1,2,....

Then there exists a positive number n such that Pi,..., Pn are all nonempty and

Pn+1, Pn+2,... are all empty. We have Z = Pi U P2 U • • • U Pn. In fact, if Z' =

Z \ Pi U • • • U Pn is not empty, then the two open sets \J{VZ: z £ Pi U ■ • ■ U Pn}
and U{K«:U' £ Z'} cover Y and they have no intersection, which contradicts the

connectedness of Y. Hence for any y in Y there exists an integer m with 1 < m < n

such that y £ Vz for some z in Pm, and by the construction of Pi,... ,Pn, there

exists a sequence yi,...,ym in F with ym = y such that j/¿_i and j/¿ belong to a

neighborhood Vz for some z in Pi for t = 1,... ,m. Hence for any x in X we have

f(x, y) - f{x, yo) < (f{x, yo) - fix, yi)) + ■ ■ ■ + {f{x, ym-\) - fix, ym))

< m <n.

Therefore we have

fix, y) < n + fix, y0) < n + M = M'

for all x in X and all y in Y.
If we set giy) = supx€Xfix, y), then g is a real-valued function on Y and

continuous. If fact, let t/o be a point of F and giyo) < r. If we set ¿5 = r — g(yo) > 0,

then there exists neighborhood V of yo such that f(x, v) - f(x, yo) < 6/2 for all x

in X and ail v in V. By the definition of g, for any y in F there exists xy in X such

that f(xy,y) > giy) - 6/2. Hence for any v in V,

g{v) < f{xv, v) + 6/2 < f(xv, yo) + 6 < g{y0) + 6 = r.

Hence g is upper semicontinuous. Since g is also lower semicontinuous, g is contin-

uous.

We define a multi-valued mapping A of X into F by

A(x) = | y: fix, y) = mm f(x, y) J .

Then the graph Gr(^4) of A is closed by the continuity of / and the upper semi-

continuity of mmyeY fi'-iU)- It is easily seen that A is convex-valued, and hence
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A is closed convex-valued and upper semicontinuous. On the other hand, for any

positive integer k we define a multi-valued mapping Bk of F into X by

Bkiy) = {x:fix,y)>giy)-l/k}.

Then Bk is convex-valued and Bk x (x) is open in F for all x in X. Therefore there

exist xk in X and yk in F such that xk £ Bkiyk) and yk £ A{xk). Then we have

the inequalities

M' > f(xk,y) > f{xk,yk) > giyk) - 1/*

for all j/ in F. Since the sequence {(/(j/fc) - 1/&} is bounded by the continuity of

g, the sequence {f{xk, ■)} is bounded in the Banach space CiY). Hence from the

Arzelà-Ascoli theorem we may assume that the sequence uniformly converges to a

function of the type fixo, ■) for some xq in X. Moreover we may assume that the

sequence {yk} converges to a point i/o of F by the compactness of F. Then we

have /(xo,2/o) = min^y f{xo,y). In fact, if the equation does not hold, then there

exists a number c such that /(xo,yo) > c > miny6y fixo,y) = /(xo,yi) with some

2/1 in F. Since the sequence {fixk,yi)} converges to /(xo,2/i), we have

c> fixk,yi) > mm f{xk,y) = fixk,yk)
y€Y

for sufficiently large k. Since the sequence {fixk,yk)} converges to fixo,ya), we

have /(xo,2/o) < c, which is a contradiction. On the other hand, from the in-

equality f{xk,yk) > g(yk) - l/k, we have f{x0,yo) > g{yo), that is, /(x0,2/o) =
maxxGX f(x,yo)-
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