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STABLE RANK OF THE DISC ALGEBRA

P. W. JONES, D. MARSHALL AND T. WOLFF1

ABSTRACT. We prove that the Bass stable rank of the disc algebra is one.

Let A be the disc algebra, consisting of functions analytic on the unit disc in C

and continuous on its closure. We prove the following result:

THEOREM 1. Suppose fuf2 £ A and |/i(z)| +1/2(2)! > 0 for all z with \z\ < 1.
Then there are gi,g2 £ A with gï1 £ A and gifi + g2f2 = 1.

The question of whether Theorem 1 is true arose in recent work of Rieffel [2]

on Tf-theory of C*-algebras. The connection is that Theorem 1 amounts to a

computation of the Bass stable rank of A. If R is any ring, then its Bass stable

rank is by definition bsr(P) =min(n: whenever r\ • • • rn+i £ R and {r,-} generate R

as a left ideal, there are bi ■ ■ ■ bn £ R such that T\ + birn+i ■ ■ ■ rn + bnrn+i generate

R as a left ideal). Since functions which generate A cannot all vanish at the same

point, one obtains bsr(.A) = 1 by dividing the conclusion of Theorem 1 by g\. Now

in [2], Rieffel introduces another concept, the topological stable rank, tsr(P). It is

defined when R is a Banach algebra and is tsr(P) = min(n: whenever ri • • • rn € R

and 6 > 0 there are bi---bn £ R such that {bj} generate R as a left ideal and

\\bj - rj || < 6). Rieffel leaves open whether tsr(7?) = bsr(P) for all Banach algebras

R, but suggests that the disc algebra should provide a counterexample. Theorem

1 shows that it does since, as he points out, it is easily seen that tsr(A) = 2.

Theorem 1 may be regarded as a variant of the Carleson corona theorem, which

states that if /1 ■ • • /„ are bounded analytic functions on D = {z £ C: \z\ < 1} and

^l/iWI > ¿ > 0 on Ö, then there are bounded analytic functions </i ■ • ■ gn such

that JjQjfj = 1. Our proof of Theorem 1 is in some sense a modification of the

proof of the corona theorem given in [1], although the assumption of continuity

at the boundary eliminates the analytic difficulties in the argument. The corona

theorem itself can be proved quickly by soft techniques when the functions fi- ■ ■ fn

are continuous up to the boundary (see [3, p. 396]), since one can identify the

maximal ideal space of A with D. However, this argument does not give gï1 £ A.

We make use of the following

Claim. Suppose /1 and f2 are as in Theorem 1. Then there is 6 > 0 and a

continuous function F: T) —> C, Lipschitz on compact subsets of D, and such that

(1) F(z) = fiiz) if |/i(2)| < «5, F(z) = 1 if |/2(z)| < 6,
i2)\Fiz)\>6iî\fiiz)\>6,
(3) dF/dz is bounded on D.
To construct F choose closed sets Ei and E2 such that Ej has finitely many

components and {\fj\ < 6} Ç Ej Ç {|/y| < 26}, where 6 is small enough so that
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{|/i| < 26}D{\f2\ < 26} = 0. By the maximum principle, E2 cannot separate any

point of Ei from the boundary of the disc. So we can extend the components of

Ei to the boundary to obtain a closed set S Ç D having the following properties:

S 2 Ei, S fi E2 = 0, and S has finitely many components each of which intersects

dD. The components of D\S are then simply connected, so a bounded continuous

branch of log f\ exists on D\S. Since E2 and S are compact and i?2 HS = 0, there

is a function q £ C°°(7î2) such that q = 1 on a neighborhood of S and q = 0 on

a neighborhood of E2. Define F{z) = exp(ç(z)log/i(z)). Clearly F is continuous

on D and satisfies (1) and (2). As for (3) we have dF/dz = F\ogfiidq/dz) when

z $ S and zero otherwise, and q is smooth. The claim is proved.

To prove Theorem 1 let <ji = {F/fi)exp(uf2), where u is as yet unknown. For

<7i to belong to A we need u continuous on D and satisfying

du _    1   dF

dz ~ Ff2 dz

on D. Set

k--L?l
" Ff2 dz ■

By (1) and (2), \Ff2\ > 62 if dF/dz ¿ 0. So A; is bounded on D and since the
convolution of a bounded function and an 71 function is continuous,

has the desired properties.

Moreover, g\ is bounded away from zero on D, sogï1 £ A. Let g2 be determined

by the condition 91/1 + g2f2 = 1. Clearly, g2 is continuous when f2 ^ 0. On the

other hand, if 0 < I/2I < 6, then

g2 = -t-(1 - Fexp(uf2)) ~ -^-(1 - exp(u/2))
72 /2

by (1), so g2 —> —« as /2 —» 0. This finishes the proof.
We are grateful to Donald Sarason for communicating the problem.
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