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RIEMANN STEP FUNCTION APPROXIMATION
OF BOCHNER INTEGRABLE FUNCTIONS1

M. A. FREEDMAN

ABSTRACT. Let L1(0,T;X) denote the space of all Bochner integrable func-

tions / which map the interval [0, T] into the Banach space X. Then we show

that / is the uniform limit in the L^-norm of its Riemann step function ap-

proximations along nearly every sequence of partitions of [0, T] with mesh size

approaching zero.

1. Convergence of the Bochner integral. As every student of calculus

knows, given a function /(•) continuous on the interval [0,T], the integral of /

exists and is given by the limit of Riemann sum approximations:

(1.1) f Mdt = ̂ JtfikT/n)T-.
Jo n^°° k=1 n

In fact, let {Pn}nc=x be any sequence of partitions of [0, T). Say each P" is given

by
Pn:0 = $<i?<---<iftn =T,

with mesh size

||Pn|| =   max  itt-tl_i),

and suppose that ||Pn|| —► 0 as n —► oo. Then for any choice of intermediate points

£fc £ (*fc-u *fc]> the integral of / satisfies

(1.2)

lim
n—»oo

r-T Nn Nn       r-tl

Í fit)dt-Y,mm-tnk-i) < iim ¿/* \fit)-m)\dt=o.
J° ¡fei "-""fcik-!

Hence the Riemann step functions for f, given by

Nn fT

(1.3)       Wn(í) = ^/(^)7(tnt„](í), satisfy   lim   /    \f{t)-wn(t)\dt = 0.
fc=l J0

Here 7^(i) denotes the indicator function of the set A. When / is not continuous

everywhere on [0, T], then in general we do not get convergence of the Riemann

sum approximations in (1.1) (or the left-most sum in (1.2)) much less convergence

of the Riemann step functions in (1.3).

Given a Banach space {X, \\ ■ ||), consider now the space 7X(0, T;X) of all X-

valued, Bochner integable functions / defined a.e. on the interval [0, T], and having

norm

|L1(0,T;X) / mm
Jo

dt.
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Extend each such / to a Bochner integrable function on all of R by defining / = 0

outside of [0, T\. If / belongs to 71(0, T;X) and is continuous, then the Banach

space analogue of (1.3) holds. That is, for any sequence of partitions with mesh

size approaching zero and any choice of intermediate points, the functions wn as

formed in (1.3) satisfy

lim   \\wn- f\\Li{o,T;X) =0.
n—>oo v '

If / is an arbitrary element of 71 (0, T; X), it is well known that / can be approx-

imated in the 71(0,T;X) norm by step functions of the form XX=i xklAk, where

Xk £ X and the Ak are disjoint intervals (e.g. see Brézis [1, p. 138]). In Lemma

A.l of [7], Kato refines this result by showing that we can choose xk = fi£k) for

some point £fc in Ak. Specifically, given / £ LxiO,T;X), Lemma A.l states that

there exists a sequence of partitions of [0, T] : 0 = íq < í" < ■ • ■ < (% = T, with

mesh size going to zero as n —> oo, and there exist points ££ £ (tjj_i, tk] fl Dom(/)

such that the sequence of Riemann step functions

Nn

«ß»(t) = E/(a?)/(tS.1,*S]W
fc=i

satisfies

lim \\wn - f\\mo,T;X) =0.
n—>oo v '

Evans, in Lemma 4.1 of [3], achieves a more structured approximation by requiring

the step functions to take values /(££) at the right end points ££ = tk. However,

since / may not be defined at T, Evans has i^v < T and has ffa approaching T

as n —> oo. We emphasize that Brézis, Kato and Evans are not free to choose their

sequence of partitions; instead they show the existence of some suitable sequence

of partitions.

In the next result, we show that almost any sequence of partitions can be used,

so that Bochner integrability is almost as good as continuity for the purpose of

approximation by Riemann step functions. More precisely:

THEOREM 1.1. Let Pn = {tk}k"0 in =1,2,...) be any sequence of partitions

of [0, T] satisfying
(M.l) ||P™|| < BpiPn) for some constant B and all n, where

piPn)=    min   (í£-r2_i),
^V       ;       l<fc<AfnV k        fc   in

(M.2) ||Pn|| ->0 as n-> oo.

Then given f £ 71(0, T; X), there exists a sequence of sets Sk Ç {tk_1,tk] having

positive measure such that f is defined at all points tk — 6n, k = 1,..., 7Vn, and

such that the Riemann step functions for f

(1-4) wn(t) = Ylf^k)i^_1^k}it),    « g sa,
fc=i

satisfy
lim ||/-wn||Li(oiT;x) =0.

n—>oo

We mention that condition (M.l) above is a mild one. For example, it is satisfied

with B = 1 along any sequence of equally spaced partitions. The proof of Theorem

1.1 rests on the following elementary lemma.
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LEMMA 1.1.   Let f belong to 71(0,T;X).  Then

(i) limc^o So Wf(r) - /(r -c)\\dr = 0 and

(Ü) lim£^o \ JoT £j 11/it) - /Mil dtdr = 0.

PROOF, (i) See [6, p. 86]. (ii) Set he(\) equal to JQT ||/(r-[2A/T-l]e)-/(r)|| dr.

Then, by (i) and the Dominated Convergence Theorem, we have lim£¿o /0 h£i\) d\

= 0. Now substitute t = r- [2X/T - l]e.
Proof of Theorem 1.1. Set pn = /¿(P") and define

Jn = ±- rflf" \\fit)-m-6)\\dtd6.

Under the substitutions r = tk — 6, since

tnk_x>tt_x-6 = itnk-6)-(tnk-tnk_i)>r-Bpn    and   tnk-pn>q_x,

we have

(W)  n

Jn<E± f"   r+"n \\f(t)-f{r)\\dtdr = ±f f*n \\fit)-fir)\\dtdr.
k=l Pn Jtn_1 Jr-Bpn H-n Jo    Jr-Bp.n

Therefore, there exist sets of positive measure Sn Ç (0, pn), for which 6n £ Sn

implies

(1.6) flT   \\M-m-6n)\\di<j- fT f \\f(t)-f(r)\\dtdr.
fc=l"'ífc_i l¿n Jo    Jr-Bßn

For each k let Sk = tk — Sn. Then with u;n(r) as in (1.4) we obtain from (1.6) and

Lemma 1.1,

lim   /   \\f(t)=wn(t)\\dt = 0.    D
n^oo J0

COROLLARY 1.1. If f £ 71(0, T;X), then for every sequence of partitions

Pn = {tk}k=o satisfying conditions (M.l) and (M.2) above, there exists a sequence

of points £j¡? £ (¿/¡Li, i)?] of the form ££ = tk — 6n, k = 1,..., 7Vn, suc/i í/iaí

/T /(Í) dt = lim £ /(#)(# - tnk_i).
Jo n^°°kTi

While from the proof of Theorem 1.1 we see that the set of allowable ££ has

positive measure, Corollary 1.1 does not hold true in general for almost every

ft £ iq_vq}. Consider

(1.7) /(í) = 5>27An(í),    where A„=(^,^ + ¿   .
71=1 '

Then along the sequence of partitions tk = kT/n, for all £f £ A„ we have

È/(«)?>/(€?)?= «T-^ oo-
fc=i n n

However, the following does hold.
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THEOREM 1.2. Let Pn = {tk}k2Q in = 1,2,...) be any sequence of parti-

tions of [0, T] satisfying conditions (M.l) and (M.2) and let ft £ itk_1,tk] be any
sequence of intermediate points.

Given f £ LxiO,T;X), define for a.e. 6 £ (0,T) the Riemann step function

Nn

wenit) = Y,fiink-^hti.1-o,tl-e]it).
fc=i

Then there exists a subsequence n(i) of the positive integers such that

lim ||/ - wen{l)\\LHo,T-9;X) = 0   for a.e. 6 £ (0,T).

PROOF. Let / denote the periodic extension of /. Thus /(i ± T) = fit) for

almost every t £ [0,T]. Define

rT Nn   rq-e

<n=    £/      \\f(t)-f(®-o)\\dtde.

The substitution r = ft - 9 and condition (M.l) give

Kn = E / \\f(t)-f(r)\\dtdr

<£/        / \\fit)-fir)\\dtdr,
k=lJ^-TJr-Bßn

where pn = /¿(Pn). Next, we make use of the periodicity of /. In fact, after working

through a number of routine steps the reader may verify

Nn     rT    rr-rBp.n

Kn<Y,        / \\fit)-fir)\\dtdr
k=l     ®     Jr-Bpn

Nn

+ E^"
fc=l

çBpn rT

/       \\fit)\\dt +
JO JT-Bßn

dt

T   rr+Bß„cl     rr+t¡n

= nJ  /
JO    Jr-Bp.„

\\fit)-fir)\\dtdr

+ BNnpn

CBßn rT

/       \\fit)\\dt+ \\fit)\\dt
JO JT-B\ln

<
1      fT    rr+Bp.n

-f fA*n Jo    Jr Bß„
\\f(t)-f(r)\\dtdr

+ B /        \\f(t)\\dt +
Jo JtT-Bß„

\\f(t)\\dt

which, by Lemma 1.1, approaches zero as n —» oo. Using the fact that 71 con-

vergence implies a.e. convergence along some subsequence, we conclude that there

exists a subsequence n(i) of the positive integers such that

(1.8) E /■ ¡fa te-E f*li—>-oo

tn(i)
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Given c > 0 and 9 £ (0, T) such that (1.8) holds, let ¿o be such that for all i > io,

(1-9) E/n ~9\\fit)-fiekii)-e)\\dt<c,

and for all r,

.r+||p»(0||

(1.10) jr ||/(í)||dí<c.

For each i > i0, let k = k(i) be such that i£i?] - 0 < 0 < tk{l) - 9. Let

Wi=l\ ~e\\m-m{i)-o)\\dt

and

W*=fk-   ~e\\fit)-fiCk{l)-6)\\dt.

Suppose ££W -9 < 0. Then by (1.10), Wt < c On the other hand, if ££(<)-0 > 0,

then by (1.9) and (1.10)

Wi < \Wi - Wi\ + Wi < I *       ||/(í) - /(i)|| di + ̂

/^, "W(<)ll + ll/(i)ll)d* + m<3c.
.♦»(0

'à-i

In either case, using (1.8) we obtain

cT-9 N"d)    rt?li)-0

[ ' \\fit)-wen{i){t)\\dt< E /*,   \\fit)-fiCk{i)-o)\\dt
Jo ¡fei Jtl{-\-6

= E  r,    e HZ» - /(CW - 0)11 dt + Wi< Ac.    D
k=k     lk-i~

COROLLARY 1.2. If f £ 7X(0, T-X), then for every sequence of partitions

Pn — {¿fc}fc=o satisfying (M.l) and (M.2) and every sequence of intermediate points

ft £ itk-i,tk], there exists a subsequence n(i) of the positive integers such that

(1.11)     [T'°f(t)dt=]im E/(£W-W£W-t;â)   fora.e.9£iO,T).
Jo *-« fc=1

REMARKS. 1. The proof of the preceding theorem shows that if the function /

is replaced by / in the formulation of w^{t), then the conclusion of Theorem 1.2

can be strengthened to

lim ||/ - wen{l)\\LHo,T;X) = 0   for a.e. 9 £ (0,T),
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and (1.11) can be changed to

f(t) dt = lim  E /(£« - 0)(tf> - tn¿\)    for a.e. 9 £ (0, T).L

fJo

0 fc=l

2. Theorems 1.1 and 1.2 and Corollaries 1.1 and 1.2 can be strengthened so that

the convergence is uniform on [0,T\. For example, the conclusion to Corollary 1.1

can be strengthened to

f{t)dt =  lim     E    ftikM - ifc-i)    uniformly for all a,r £ [0,T],
n—>oo       '    *

k=q(o,n)

where qi£,n) is that index such that £ £ itn,¿ ,_j,í"/, J. The proofs follow

readily using the above techniques together with the absolute continuity property

of the Bochner integral.

3. It may be shown that all the above results hold equally true for arbitrary

functions in 7P(0, T; X) for any 1 < p < oo.

2. Convergence of the product integral. This section is concerned with

the initial value problem

dn
(IVP) ^(í)+i(¿)ii(í)3 0,    0<Í<T,        ii(0) = i6l,

where u takes values in an arbitrary Banach space X and for each t, A{t) is a

nonlinear, possibly multivalued operator. Consider the following theorem.

THEOREM 2.1 (CRANDALL AND PAZY [2]). Assume that for some real num-

ber u, the family of operators Ait), 0 < t < T, satisfies

(Q.l) D = Dom(A(t)) is independent oft,
(Q.2) Ran(7 + XA(t)) Do for 0 < t < T and 0 < A < A0, where uj\0 < 1, and
(Q.3) Each resolvent operator J\it) = [I + AA(i)]-1 is a Lipschitz mapping on

otoí/1(Ja(í))líp<(1-wA)-1.
In addition, assume that Ait) is restricted by one of the following time-dependence

conditions:

(C.l) There exist a continuous function h: [0,T] —> X and an increasing contin-

uous function L such that

\\Jx(t)x-Jx(T)x\\<MW)-h(r)\\L(\\x\\)

for 0 < A < A0, 0 < i, r < T and x £ D;
(C.2) There exist a continuous function h: [0, T] —» X of bounded variation and

an increasing continuous function 7 such that

\\Mt)x - Jx(t)x\\ < X\\h(t) - Mr)||7(||x||){l + ||A(r)JA(r)x||}

for 0 < A < An, 0 < t, t < T and x£D.
If, given x £ D, the initial value problem (IVP) has a strong solution t¿(t) on

[0,T], then for each t £ (0,T], the product integral

(PI) lim  ' T Jt/n{kt/n)x
fe=l

exists and equals u(t) uniformly on [0, T].
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By a strong solution of (IVP) on [0, T], Crandall and Pazy mean a function

u: [0, T] -» X for which

(5.1) u is continuous on [0, T] and u(0) = x,

(5.2) u is absolutely continuous on compact subsets of (0,T),

(5.3) u is differentiate a.e. on (0, T) and satisfies the differential equation of

(IVP) a.e.
However, for our purposes, throughout the remainder of this section we shall replace

(S.2) with the stronger hypothesis

(S.2') u is absolutely continuous on [0, T].

Note that the convergence in (PI) is along the sequence of equally spaced par-

titions of [0, £]: 0 = Íq < tn < ■ • ■ < i™ = t, where tk = kt/n. However, since the

modulus function h{t) in (C.l) and (C.2) is continuous, it can be shown that for ev-

ery sequence of partitions Pn: 0 = ig < tn < • • • < t% =T with ||Pn|| approaching

zero and every sequence of intermediate points ft £ \tk_i,tk], the product integral

(pi') it'ff Jti-ti.Mk)^
k=\

exists and equals u(t) uniformly on [0,T].

The next result, based on Evans [3, pp. 32, 33], eliminates the need for time

dependence restrictions like (C.l) or (C.2).

THEOREM 2.2 (EVANS). Assume (Q.1)-(Q.3) for almost every t,r £ [0,T\.
Let x £ D be given. Suppose (IVP) has a strong solution u{t) on [0, T]. Then for

every 0 < T <T, there are partitions Pn: 0 = iff < tn < ■ ■ ■ < t%n such that

T < tnjn < T, limn^oo ||Pn|| = 0 and when ft = tk, the product integral (PL)

exists and equals u(t) uniformly on [0, T\.

In contrast to Theorem 2.1, in general in Theorem 2.2 we cannot expect to have

convergence of the product integral along every sequence of partitions with mesh

size approaching zero. For along every such sequence of partitions, the family of

resolvents operators which comprise the finite product aproximation to the product

integral in (PF) can be redefined without changing the hypotheses of the theorem.

In the next theorem, however, we are able to achieve convergence of the product

integral along every sequence of partitions satisfying (M.l) and (M.2), much as in

(PF). The proof follows from Theorem 1.1 using the technique of Theorem 2.2 and

is left to the reader.

THEOREM 2.3. Given x £ D, suppose (IVP) has a strong solution w(r) on

[0,T]. Further assume that the family of operators A(t) satisfies (Q.1)-(Q.3) almost

everywhere on [0,T]. Let Pn = {tk}k=0 be any sequence of partitions of [0,T]

satisfying (M.l) and (M.2). Then there exist points ft £ itk_i,tk] of the form

ft = tk - 6n, k = 1,... ,Nn, such that (PF) exists and equals u(t) uniformly on

[0,21.
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Likewise, using Theorem 1.2 we may prove

THEOREM 2.4. Under the hypotheses of Theorem 2.3, for every sequence of

intermediate points ft £ {tk_1,tk}, there exists a subsequence n(i) of the positive

integers such that

q(t,n(%))

u(í -9)= lim J,„(,) _,„(„ (£?W -9)x
i—»CO        -*-X lk lk-l

1=1

for a.e. 9 £ (0, t) uniformly on (0, T],

REMARKS. 1. Observe that Theorem 2.3 generalizes Theorem 2.2.

2. Theorem 2.3 will not hold true, in general, for almost every ft £ itk_1,tk}.

Consider A(t) = f{t) as defined by (1.7). Then the strong solution to (IVP) will be

u(t) = exp(- f¿A{s)ds)u(0). In particular, u(T) = exp(-T£~=1 l/n2)u(0) ^ 0
for u(0) t¿ 0. However, along the sequence of equally spaced partitions of [0, T],

namely tk = kT/n, we have

n jT/»(ff)tt(o)
fc=i

< |[1 + (T/n)A(ÖT)]-l| |u(0)| = j^M0)! ">°   asn-,00,

for all ft G (T/Vi.T/n + T/n4].
3. In Theorem 2.1 of [2], it is shown that properties (Q.1)-(Q.3) and either (C.l)

or (C.2) imply existence of the product integral (PI). In fact, in their proof of the

above-stated Theorem 2.1, Crandall and Pazy make use of this existence. However,

as discussed below, (Q.1)-(Q.3) alone are not enough to ensure convergence in (PI).

An additional hypothesis, such as existence of strong solution to (IVP), is required.

Therefore, Theorems 2.2, 2.3 and 2.4 provide a new sufficient condition for existence

of the product integral. This condition is exploited in [5] in connection with proving

existence of strong solution to singular evolution equations.

4. As a special case of Theorem 2.3, consider when A(t) satisfies (Q.1)-(Q.3)

and nearly satisfies either (C.l) or (C.2). That is, in place of (C.l) or (C.2), Ait)

is restricted by either (OF) or (C.2') given by

(C.l'), (C.2'): the same as (C.l) and (C.2), respectively, on (0, T}. At t = 0, h{t)
need not be continuous, but we require that the map (A, s, x): [0, An] x [0, T] x 2? h*

J\is)x be continuous.

The distinction between (C.l), (C.2) and (Cl'), (C.2') may seem insignificant.

However, one point made in [4] is that there exist generators A(t) having all their

pathologies concentrated ait = 0, so that the distinction can be crucial with respect

to existence of the product integral. For, as shown in [4], properties (Q.1)-(Q.3)

and either (C.l') or (C.2') do not in themselves guarantee convergence of (PI) or

even of (PF) for any sequence of partitions Pn with mesh size approaching zero.
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