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TRANSFORMATIONS INDUCED IN THE STATE SPACE

OF A C*-ALGEBRA AND RELATED ERGODIC THEOREMS

A. LUCZAK

Abstract. Let A be a norm-separable C*-algebra with unit 1, o-weakly dense in a

W^-algebra M. and let a be a positive linear mapping of M into itself leaving 1

invariant. We show that a induces a transformation à defined "almost everywhere"

on the state space a of A with values in o. If a is a '-automorphism of M, then

there exists

for "almost all" states \p of A, where á„ are transformations on a induced by a".

1. Introduction. Let M be a W^-algebra and let A be a norm-separable C*-subal-

gebra of M with unit 1, a-weakly dense in M. Let a be a positive linear mapping of

M into itself such that a(\) = 1. The mapping a induces, in the natural way, a

transformation a*: M* —> M*, namely, (a*<p)(x) = <p(ax) for œ e M*, x g M.

However, for the purposes of quantum mechanics, it is desirable to define an

induced transformation à: a0 —> a, where a0 is a (possibly large) subset of the state

space a of A. Let us discuss this question more thoroughly. In the algebraic

formalism of quantum mechanics the observables of a physical system are repre-

sented by the selfadjoint elements of a (norm-separable) C*-algebra A, and the

states of the system by a subset of the state space o of A. The dynamics of the

system is usually assumed to be represented by a one-parameter group {«',: (eR)

of *-automorphisms of A. However, in many important cases (e.g. for the noninter-

acting Bose gas), the assumption about the dynamics is not satisfied. Thus, as a more

appropriate form of the dynamics, one considers a one-parameter group {a,: re R}

of *-automorphisms of the von Neumann algebra -nu(A)", where -rru is the GNS

representation of A associated with an equilibrium state u¡ of A (see [1, Introduc-

tion]). Assuming this form of the dynamics, let us identify A with ttu(A) and put

M = -it^(A)". Then, if a state $ on A is the restriction of a state <p of M, the

expectation value ^(a) at instant zero would evolve in time /, in the Schrödinger

picture, to (at\¡/)(a) = (af<p)(a) for any a in A. Now, the problem arises to define

the evolution àt\p for sufficiently many \p not of the above type, at least for a

discrete time variable t, obtaining an orbit {an\p: n = 0, ±1,...} which is the basic
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object of many ergodic problems. Having defined such an orbit, the ergodic problem

in the formulation of [7] lies in what follows:

Prove, for as many states \p of A as possible, the existence of

j   N-l

lim  — £«„f
W—o N „ = 0

where the limit is taken in the weak*-topology of the state space of A.

Thus we are concerned with two questions: to construct a transformation ä

defined on some subset of the state space a of A induced by a positive mapping a of

M into itself (or, more generally, a sequence of transformations àn induced by a")

and to prove the ergodic theorem as formulated above. Both the problems were

considered by Radin in [6,7], who solved them under the assumption that the von

Neumann algebra M is finite. The aim of this paper is to generalize Radin's result to

the case of an arbitrary algebra M.

2. Preliminaries and notation. Throughout the paper, M will denote a a-finite

W/*-algebra; A a norm-separable C*-subalgebra of M with unit 1, a-weakly dense

in M; o the state space of A; and p a normal faithful state of M. Considering the

GNS representation of M associated with p, we assume that M and A are algebras

of operators acting in a Hubert space 77.

Let {xn} c M, x e M. We say that xn converges almost uniformly to x, x„ -» x

a.u., if, for each e > 0, there is a projection e in M such that p(e) > 1 — e and

lim^JKx.-jOell-O.
x„ converges quasi-uniformly to x, x„ -* x q.u., if, for each e > 0 and each

projection e in M, there is a projection f in M such that / < e, p(e — f) < e and

lim„^J|(x„-x)/|| = 0.

It is obvious that q.u. convergence implies a.u. convergence and the result of

Paszkiewicz [4] says that these two types of convergence are identical for bounded

sequences of M.

A sequence {en} of projections in M is called an exhaustion if en T 1 a-weakly.

Let a0 be a subset of the state space a of A. aQ is said to be of full measure if

there is an exhaustion {en} such that
00 _

°o D  U {<P\A- 9 G M¿,s(<p) < e„),
n-l

where s(<p) is the support of (¡p and the closure is taken with respect to the

weak*-topology of a (cf. [7]).

3. The noncommutative von Neumann-Maharam theorem. Let a be a positive

linear mapping of M into itself such that a(l) = 1. A transformation 5 defined on a

subset of the state space a of A with values in a will be called induced by a if

&(cp\A) = (a*<p) | A

for all states <p of M such that <p\A belongs to a weakly*-dense subset of the

domain of á. In this section we prove the noncommutative von Neumann-Maharam

theorem which states that a induces a transformation ä defined almost everywhere

on a (i.e. on a subset of a of full measure).
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For x in M, put ||x||2 = [p(x*x)]1/2.

Lemma 1. Let xn, x belong to M, and assume that E^_i||x„ — jc||2 < oo. Then

X„ -» x a.u.

Proof. Denoting yn = (xn — x)*(xn - x), we obtain a sequence { v„} of positive

operators in M with T.^=xp(y„) < oo. Take a sequence {e„} of positive numbers,

e„ 10 and E^.iE^pÍJ«) < °°. Given e > 0, we choose a positive integer N such that

T.f=Ne~1p(yll) < e/2 and consider the sequence {y„}™=N. According to [2, Theorem

1.2, p. 256, with m = 1], there is a projection e in M with the properties

00

\\ey„e\\ < e„    for n ^ N   and    p(e) > 1 - 2 £ e'VKvJ-
n-JV

Since    ||fc;y„e|| = ||e(x„  — x)*(xn  — x)e|| = ||(x„  — x)e||2,    we    get    that

lim,?_00||(;c,! - x)e\\ = 0 and p(e) ^ 1 - e, which completes the proof.

Lemma 2. For each x in M, there exists a sequence {an} c A such that a„ -» x q.u.

Proof. Let x e M be given, and consider the ball (jeM: ||j>|| < ||x||) with the

strong topology. This topology is metrizable by the metric d(yx, y2) = \\yx - y2\\2

([8, Proposition 5.3, p. 148] together with the fact that, for bounded sets, the

a-strong and the strong topologies coincide). By virtue of the Kaplansky density

theorem, the ball [a g A: \\a\\ < ||x||} is strongly dense in [y e M: \\y\\ < ||x||} and

the metrizability yields that there is a sequence {bk} in A such that \\bk\\ < ||x|| and

II^a — x\\'2 ~* 0- Take a subsequence {bk } with the property Y.^=i\\bk — x\\\ < oo

and put an = bk . On account of Lemma 1, we have that an -* x a.u. and, since

||ú(„|| < ||jc||, the result of Paszkiewicz, mentioned in §2, implies that a„-»i q.u.

Now, we prove a generalization of the noncommutative Egorov theorem (cf. [8,

Theorem 4.13, p. 85]).

Theorem 3. For each sequence {x„} c M, there exist a sequence {anj} c A and

an exhaustion {ek} in M, such that

\\(x„ - anj)ek\\-> 0    asj -> oo, forn, k = 1,2,....

Proof. According to Lemma 2, we can find a sequence {anj} c A with anj -» x„

q.u. as j -* oo, for each /?. Our first step consists in showing that, for each

projection q in M and each e > 0, there is a projection p < q in M with

p(g -/?)<£, such that ||(x„ - anJ)p\\ -* 0 as _/' -» oo, for each «.

To this end, take an arbitrary e > 0 and choose a projection px ^ q such that

||(x, - aij)pi\\-* 0   as ;' -> oo    and    p(q- px) < e/2.

This is possible because al7 -♦ xx q.u. Next, we choose a projection /?2 < />j such

that

\\ix2~ a2j)P2\\^ Q   as;'-* oo    and    p^ -/>2) < e/4,

and so on.
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Proceeding that way, we obtain a sequence {p„} of projections in M with

p„ < /»„_, and p(/>„_, - p„) < e/2".

Put p = lim,,^^ />„. p is a projection in M and, since

p(/>„)>p(/>n-i)-e/2">  •••  >p(q)-(e/2+ ••• + e/2") > p(9) - e,

we have p(p) > p(q) — e. Evidently, p ^ q and, for each «,

ll(*„ - a„j)p\\ < ||(x„ - a„j)p„\\ -» 0    as y -» oo,

which states our claim.

Now, let e„ 10 and let us find, according to the above considerations (with q = 1),

a projection /,   in M such that ||(jc„ - anj)fx\\ -> 0 as j -> oo, for each n, and

p(l   -/i)<   £,.

Putting q = \ — fx in the first part of the proof, we can find a projection

f2 < 1 — /] such that

||(*„-a„7)/2||^0    as y-» oo,

for each n, and p(l - (fx + /2)) < e2.

Having found the projections fx,...,fk_x, we can find a projection fk < 1 — (/j

+ " " " +A -1 ) such mat

IK*« - ö»>)A|-* 0   as;-» oo,

for each n, and p(l - (/, + • • • +/*)) < ek. Thus, we obtain a sequence {/A} of

projections in M, pairwise orthogonal and such that \\(xn — anj)fk\\ -* 0 as j -* oo,

for each n, k, and p(/, + • • • +/¿) > 1 — e¿.

To construct the desired exhaustion, put ek= fx + ■ ■ ■ +fk. We have e¿ < eA + 1

and p(eA) > 1 — eA -* 1 as â: -» oo, which shows that {e¿} is an exhaustion.

Moreover, for each n, k,

IK*»- ûnj,)*A||<||(*«-an;)/i|+ ••■ +||(*»-fl«i./)/*||-* °    as-/-_> °°'

which completes the proof.

Now, we are in a position to prove the main result of this section.

Theorem 4. Let a be a positive linear mapping of M into itself such that a(l) = 1.

Then there exist a subset o0 of full measure in the state space o and a transformation ä:

a0 -* o induced by a.

Proof. Let A0= {ax,a2,...} be a countable norm-dense subset of A. Put

x„ = a(an). By virtue of Theorem 3, there exist a sequence {an/} C A and an

exhaustion ( ek} in M, such that ||(jc„ - anj)ek\\ -» 0 as j -* oo for each «, Ac.

Let us define aQ by the equality

00 _

°o=  U {<f|^: <pe M*+,||<p||= l,s(cp)^ek},

where s(q>) is the support of <p and the closure is taken with respect to the

weak*-topology of a D a0.
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Let \p G a0. Then 4>(a) = limAe Ai¿/X(a) for all a g A, and t//x = cpx |^4, where

<px g M¿, \\(px\\ = 1 and s(<px) < eK for some fixed K and all À G A.

The representation of \px as <px | ̂ 4 is unique since the equality y^lA = <p(^\A

yields (p(1) = (¡p(x2) because «p^1* and (p(À2) are normal and A is 0-weakly dense in M.

We are going to define à on a0 by

iäxp){a) = lim<px(a(a)).
XeA

First, we shall show that äyp is well defined for all an g A0.

Given e > 0, with fixed n and K as above, we find a number j0 such that

IK*« - a„Ja)eK\\ < e/3- Since anJo e /I, we have <Kan,0) = IimXeA^x(fl„A), which

implies that

|<Px'(û„7o) - 9v(û»y0) | < e/3

for sufficiently large X', X". For these À', À", we have

|<Pv(«(öii)) - <Pv'(«(a«)) I =kv(*») - <Pa-(*J I

< |<Pv(*„) - <Px'(a»y0) I + kv(a»ya) - <Px"(a„A)) |

+ |<Px"(a„,0) -<Px"(*„)|

< 2\\(x„ - a„Jo)eK\\ + \<pyia„Jn) - «px«(a„7o)|

since s(<Pv)> í(<Pa") < eK- The above estimation yields the inequality \cpy(a(an)) —

<py.(a(a„))\ < £ proving the existence of limAeA(px(a(a„)).

Now let an, am be arbitrary elements of A0. We have

!(«*)(*»)-(«MO I = lim |<Px(a(û»))-«Px(a(fl«))|
XeA

< lim ||<px||||a(a„) - a{am)\\^\\a„ - am\\.
XeA

The last inequality shows that ä\p is uniformly continuous on AQ and thus has the

unique continuous extension to A. It is standard to show that this extension can be

defined by the limiting procedure.

The fact that &\p is a state on A is almost trivial. That à is induced by a is a

consequence of the definition of àip as limx 6 A(«*<Px) IA and the fact that the set
oc

(J [<p\A: y e M„M|<p||= l,s(<p) «S ek)
k-l

is weakly*-dense in a0.

Now, let Z be the set of all integers and N the set of nonnegative integers.

Consider the semigroup {a": n E N} or the group {a": n e Z} for a invertible. We

have

Theorem 5. 77zere exw/i a family {än: « g N (or Z)} of transformations defined

on a subset of full measure a0 c a h>,í/i values in a, induced by {a": n g 7Y (or Z)} /«

//»e sense that

ä„(<p\A) = ((a")*9)|i4

/or cp\A in a weakly*-dense subset of a0.



622 A. LUCZAK

The proof follows the lines of the proof of Theorem 4; the only differences lie in

choosing the exhaustion {ek} for the sequence x„m = a"(am) and defining ä„\p as

iàj)(a) = lim q>x(a"(a))    for ^ g a0.
XeA

4. Ergodic theorems. In this section we assume that a is a *-automorphism of M

leaving p invariant. The starting point in our considerations is the following

refinement of Lance's ergodic theorem [3], due to Petz [5].

Theorem 6. There exists a norm-continuous linear projection ': M-* M such that,

for each x in M, the ergodic means

k = 0

converge to x q.u.

Let us observe that, apart from its original proof, this result is an immediate

consequence of Lance's theorem and the above-mentioned result of Paszkiewicz

since HS^x)!! < ||jc||.

Proposition 7. For each e > 0 and each projection q in M, there exists a projection

p < q in M such that for each a G A, \\(SN(a) — â)p\\ -* 0 and p(q — p) < £.

Proof. Let e > 0, let a projection q be given, and let A0 = {ax,a2,...} be a

countable norm-dense subset of A. According to Theorem 6, we can find a

projection px < q such that

\\(SNiax)-àl)px\\^Q   and    p(q -/>,)< e/2.

Again using Theorem 6, we find a projection p2 < px such that

\\(SN(a2)-â2)p2\\->Q   and    p(Pl - p2) < e/4.

Proceeding further in this way, we find a sequence {pn} of projections in M with

the properties: p„ < pn_x, \\(SN(an) - â„)pn\\ -> 0 as N -» oo and p(7>n_i - p„) <

e/2".

Put /j = lim,,^^ pn. We have p ^ q and since

P-(a)>p(A-i)-«/2">  ••■  >p(q)-(e/2+ ••• +«/2»),

we obtain that p(p)> p(q) - e. Moreover, for each an G A0,

\\(SN(a„) - â„)p\\^\\(SN(a„) - â„)p„\\^ 0   as N - oo

and the norm-density of /40 in ^4 together with the norm-continuity of "yield the

claim.

The following theorem answers one of the questions raised in [7] in a rather

general form.

Theorem 8. There exists an exhaustion {en} in M such that, for each a in A,

\\(SN(a) -â)e„\\-* 0    as N -* oo for n = 1,2,....
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Proof. Take a sequence of positive numbers {e„}, £„ i 0. By virtue of Proposition

7, there is a projection px in M such that, for each a in A,

\\(SN(a) - â)px\\^ 0   and    p(l -px) < ev

Again using Proposition 7, we find that there is a projection p2 < 1 — px such that,

for each a in A,

\\iSN{a) -a)p2||-> 0    and    p(l -(px + p2)) < e2.

Proceeding further that way, we obtain a sequence {pn) of projections in M with

the properties: pn < 1 - (px + • • • +p„_x), IK^a) ~ a)P„\\ -> 0 as TV -> oo for

each a in A, and p(l - (/>, + ■ • • +p„)) < £„. Put e„ = px + ■ • ■ +p„. We have

e„ < e„ + i and p(en) > 1 — e„ -» 1 as « -» oo, which shows that {e,,} is an exhaus-

tion. Moreover, for each a in A and every n,

\\{SN(a) - â)en\\ < \\{SN{a) - â)Pl\\ + ■■■+ ||(Sw(fl) - â)pj - 0

as A/ -> oo, which completes the proof.

Let / be an arbitrary projection in M. A sequence {en} of projections in M is

called a conditional exhaustion with respect to / if en T /.

Following the lines of the proof of the above theorem, we could prove

Proposition 9. For each projection f in M, there exists a conditional exhaustion

{e„} such that, for each a in A,

\\(SNia) -a)eJ-»0    asN ^ oo for n = 1,2,....

As was stated before, there exist a subset aQ of a,

00 _

ao =  U {<pM: <P G M¿,s(<p) < e„ }
» = i

for some exhaustion {en} in M, and a family of transformations {än: n =

0, ±1, ...} defined on a0, induced by a. Our first goal is to reformulate Theorem 8

in the following way:

Proposition 10. There exists an exhaustion {/„} in M such that fn < en and, for

each a in A,

\(SN(a) -â)/J-> 0    asN -» oo for n = 1,2.

Proof. Put pn = e„ - e„_x (e0 = 0). Then L^=lp„ = 1, p„pm = 0 for n * m and

e„ = T.km¡lpk. For each pn, we find, on account of Proposition 9, a conditional

exhaustion {qmn}™=x such that qmn 1 pn as m -» oo and, for each a in yl,

||(SAr(a)-â)gOTM||->0   as AT-»oo, m-1,2.

Let /„, = E"'=1^m„. /„, is a projection as a sum of orthogonal projections.

Moreover

m m m +1

/m  =    ¿^   Qmn ^    2^   Qm+ln ^     2^   1m+ln  = Jm+l
n = 1 n = 1 /? = 1
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and

fm =    E   Qmn  <    E  />„ =  «*■
B-l »-1

To prove that fm Î 1, take an arbitrary £ > 0. We shall show that there exists a

number m' such that p(fm) > 1 — 2e which is enough since the sequence {/„,} is

nondecreasing.

Choose a number w0 such that T.k!Lxp(pk) > 1 — e. Next, choose numbers w^,

fc = 1,..., mQ, such that

P(?mtJ > P{Pk) - e/2*    ÍOTk = l,.-.,w0,

which is possible because qmn Î p„. Put w' = max(w0,..., mm ). We have

P(/«') > P(?mil) +   * * '   + P(«mmo*0)

>p(Pl)+ ■■■ +pipmo)-{e/2+ ■■■ +e/2"'°)>l-2e,

the first inequality being a consequence of

?» > 9m' for w" > m '", « = 1,2,_

The proof of the proposition has thus been completed.

Our last theorem provides a solution to the main problem raised in [7].

Theorem 11. 7*br almost every state \p in a, the following limit, in the weak*-topol-

ogy of o, exists:

N-l

lim
1

N^œ N
E «„'/'•

„ = 0

Proof. Let a0 with the exhaustion {en} be as defined before Proposition 10 and

let ( /„} be the exhaustion whose existence was proved in Proposition 10. Put

•o- U {<p\A: <pGM*+,||(p||= l,s(<p)</„},
n = i

where the closure is taken with respect to the weak*-topology of a. a¿ is of full

measure and, for an arbitrary element \p of a¿, we have \p(a) = limx<px(a) for each

a in A, where <px g M¿", ||<P\|| = 1 and s(cpx) < fn   for a fixed n0 and all À.

For each a in A and positive integers Nx, N2, we have, on account of Theorem 5,

A/i-l N2-l

JT £(*»*)(«)-^ E (MX«)
n-0

lim
X

2   „ = 0

¿- e1^«"^))-^!:1^«"^))
"i „to A/.

2   n = 0

= lim |«pA((SWi(a) - â)f„o-{sN2ia) - â)fj \
A

^¡{S^a) - â)fno-{SNi(a) - â)fj.

By virtue of Proposition 10, the last expression tends to zero as Nx, N2 -* oo, and

our result follows from the completeness of a in the weak*-topology.
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