TRANSFORMATIONS INDUCED IN THE STATE SPACE OF A C*-ALGEBRA AND RELATED ERGODIC THEOREMS

A. ŁUCZAK

ABSTRACT. Let A be a norm-separable C^* -algebra with unit 1, σ -weakly dense in a W^* -algebra M, and let α be a positive linear mapping of M into itself leaving 1 invariant. We show that α induces a transformation $\tilde{\alpha}$ defined "almost everywhere" on the state space σ of A with values in σ . If α is a *-automorphism of M, then there exists

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N-1}\tilde{\alpha}_n\psi$$

for "almost all" states ψ of A, where $\tilde{\alpha}_n$ are transformations on σ induced by α^n .

1. Introduction. Let M be a W^* -algebra and let A be a norm-separable C^* -subalgebra of M with unit 1, σ -weakly dense in M. Let α be a positive linear mapping of M into itself such that $\alpha(1) = 1$. The mapping α induces, in the natural way, a transformation α^* : $M^* \to M^*$, namely, $(\alpha^* \varphi)(x) = \varphi(\alpha x)$ for $\varphi \in M^*$, $x \in M$. However, for the purposes of quantum mechanics, it is desirable to define an induced transformation $\tilde{\alpha}$: $\sigma_0 \to \sigma$, where σ_0 is a (possibly large) subset of the state space σ of A. Let us discuss this question more thoroughly. In the algebraic formalism of quantum mechanics the observables of a physical system are represented by the selfadjoint elements of a (norm-separable) C*-algebra A, and the states of the system by a subset of the state space σ of A. The dynamics of the system is usually assumed to be represented by a one-parameter group $\{\alpha'_t: t \in \mathbb{R}\}$ of *-automorphisms of A. However, in many important cases (e.g. for the noninteracting Bose gas), the assumption about the dynamics is not satisfied. Thus, as a more appropriate form of the dynamics, one considers a one-parameter group $\{\alpha_i: t \in \mathbb{R}\}$ of *-automorphisms of the von Neumann algebra $\pi_{\omega}(A)''$, where π_{ω} is the GNS representation of A associated with an equilibrium state ω of A (see [1, Introduction]). Assuming this form of the dynamics, let us identify A with $\pi_{\omega}(A)$ and put $M = \pi_{\omega}(A)''$. Then, if a state ψ on A is the restriction of a state φ of M, the expectation value $\psi(a)$ at instant zero would evolve in time t, in the Schrödinger picture, to $(\tilde{\alpha}, \psi)(a) = (\alpha, \psi)(a)$ for any a in A. Now, the problem arises to define the evolution $\tilde{\alpha}, \psi$ for sufficiently many ψ not of the above type, at least for a discrete time variable t, obtaining an orbit $\{\alpha_n \psi : n = 0, \pm 1, ...\}$ which is the basic

Received by the editors March 22, 1984 and, in revised form, January 21, 1985.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 46L50; Secondary 28D05.

Key words and phrases. Convergence in von Neumann algebras, state space of a C*-algebra, ergodic theorems.

object of many ergodic problems. Having defined such an orbit, the ergodic problem in the formulation of [7] lies in what follows:

Prove, for as many states ψ of A as possible, the existence of

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N-1}\tilde{\alpha}_n\psi,$$

where the limit is taken in the weak*-topology of the state space of A.

Thus we are concerned with two questions: to construct a transformation $\tilde{\alpha}$ defined on some subset of the state space σ of A induced by a positive mapping α of M into itself (or, more generally, a sequence of transformations $\tilde{\alpha}_n$ induced by α^n) and to prove the ergodic theorem as formulated above. Both the problems were considered by Radin in [6, 7], who solved them under the assumption that the von Neumann algebra M is finite. The aim of this paper is to generalize Radin's result to the case of an arbitrary algebra M.

2. Preliminaries and notation. Throughout the paper, M will denote a σ -finite W^* -algebra; A a norm-separable C^* -subalgebra of M with unit 1, σ -weakly dense in M; σ the state space of A; and ρ a normal faithful state of M. Considering the GNS representation of M associated with ρ , we assume that M and A are algebras of operators acting in a Hilbert space H.

Let $\{x_n\} \subset M$, $x \in M$. We say that x_n converges almost uniformly to x, $x_n \to x$ a.u., if, for each $\varepsilon > 0$, there is a projection e in M such that $\rho(e) \ge 1 - \varepsilon$ and $\lim_{n \to \infty} ||(x_n - x)e|| = 0$.

 x_n converges quasi-uniformly to x, $x_n \to x$ q.u., if, for each $\varepsilon > 0$ and each projection e in M, there is a projection f in M such that $f \le e$, $\rho(e-f) < \varepsilon$ and $\lim_{n \to \infty} ||(x_n - x)f|| = 0$.

It is obvious that q.u. convergence implies a.u. convergence and the result of Paszkiewicz [4] says that these two types of convergence are identical for bounded sequences of M.

A sequence $\{e_n\}$ of projections in M is called an exhaustion if $e_n \uparrow 1$ σ -weakly.

Let σ_0 be a subset of the state space σ of A. σ_0 is said to be of full measure if there is an exhaustion $\{e_n\}$ such that

$$\sigma_0 \supset \bigcup_{n=1}^{\infty} \left\{ \overline{\varphi | A \colon \varphi \in M_{\bullet}^+, s(\varphi) \leqslant e_n} \right\},$$

where $s(\varphi)$ is the support of φ and the closure is taken with respect to the weak*-topology of σ (cf. [7]).

3. The noncommutative von Neumann-Maharam theorem. Let α be a positive linear mapping of M into itself such that $\alpha(1) = 1$. A transformation $\tilde{\alpha}$ defined on a subset of the state space σ of A with values in σ will be called induced by α if

$$\tilde{\alpha}(\varphi|A) = (\alpha^*\varphi)|A$$

for all states φ of M such that $\varphi \mid A$ belongs to a weakly*-dense subset of the domain of $\tilde{\alpha}$. In this section we prove the noncommutative von Neumann-Maharam theorem which states that α induces a transformation $\tilde{\alpha}$ defined almost everywhere on σ (i.e. on a subset of σ of full measure).

For x in M, put $||x||_2 = [\rho(x^*x)]^{1/2}$.

LEMMA 1. Let x_n , x belong to M, and assume that $\sum_{n=1}^{\infty} ||x_n - x||_2^2 < \infty$. Then $x_n \to x$ a.u.

PROOF. Denoting $y_n = (x_n - x)^*(x_n - x)$, we obtain a sequence $\{y_n\}$ of positive operators in M with $\sum_{n=1}^{\infty} \rho(y_n) < \infty$. Take a sequence $\{\varepsilon_n\}$ of positive numbers, $\varepsilon_n \downarrow 0$ and $\sum_{n=1}^{\infty} \varepsilon_n^{-1} \rho(y_n) < \infty$. Given $\varepsilon > 0$, we choose a positive integer N such that $\sum_{n=N}^{\infty} \varepsilon_n^{-1} \rho(y_n) < \varepsilon/2$ and consider the sequence $\{y_n\}_{n=N}^{\infty}$. According to [2, Theorem 1.2, p. 256, with m=1], there is a projection e in M with the properties

$$\|ey_n e\| < \varepsilon_n \text{ for } n \ge N \text{ and } \rho(e) \ge 1 - 2 \sum_{n=N}^{\infty} \varepsilon_n^{-1} \rho(y_n).$$

Since $||ey_ne|| = ||e(x_n - x)^*(x_n - x)e|| = ||(x_n - x)e||^2$, we get that $\lim_{n \to \infty} ||(x_n - x)e|| = 0$ and $\rho(e) \ge 1 - \varepsilon$, which completes the proof.

LEMMA 2. For each x in M, there exists a sequence $\{a_n\} \subset A$ such that $a_n \to x$ q.u.

PROOF. Let $x \in M$ be given, and consider the ball $\{y \in M: \|y\| \le \|x\|\}$ with the strong topology. This topology is metrizable by the metric $d(y_1, y_2) = \|y_1 - y_2\|_2$ ([8, Proposition 5.3, p. 148] together with the fact that, for bounded sets, the σ -strong and the strong topologies coincide). By virtue of the Kaplansky density theorem, the ball $\{a \in A: \|a\| \le \|x\|\}$ is strongly dense in $\{y \in M: \|y\| \le \|x\|\}$ and the metrizability yields that there is a sequence $\{b_k\}$ in A such that $\|b_k\| \le \|x\|$ and $\|b_k - x\|_2 \to 0$. Take a subsequence $\{b_{k_n}\}$ with the property $\sum_{n=1}^{\infty} \|b_{k_n} - x\|_2^2 < \infty$ and put $a_n = b_{k_n}$. On account of Lemma 1, we have that $a_n \to x$ a.u. and, since $\|a_n\| \le \|x\|$, the result of Paszkiewicz, mentioned in §2, implies that $a_n \to x$ q.u.

Now, we prove a generalization of the noncommutative Egorov theorem (cf. [8, Theorem 4.13, p. 85]).

THEOREM 3. For each sequence $\{x_n\} \subset M$, there exist a sequence $\{a_{nj}\} \subset A$ and an exhaustion $\{e_k\}$ in M, such that

$$\|(x_n - a_{nj})e_k\| \to 0$$
 as $j \to \infty$, for $n, k = 1, 2, \dots$

PROOF. According to Lemma 2, we can find a sequence $\{a_{nj}\} \subset A$ with $a_{nj} \to x_n$ q.u. as $j \to \infty$, for each n. Our first step consists in showing that, for each projection q in M and each $\varepsilon > 0$, there is a projection $p \leqslant q$ in M with $\rho(q-p) \leqslant \varepsilon$, such that $\|(x_n-a_{nj})p\| \to 0$ as $j \to \infty$, for each n.

To this end, take an arbitrary $\varepsilon > 0$ and choose a projection $p_1 \leqslant q$ such that

$$\|(x_1 - a_{1i})p_1\| \to 0$$
 as $j \to \infty$ and $\rho(q - p_1) < \varepsilon/2$.

This is possible because $a_{1j} \rightarrow x_1$ q.u. Next, we choose a projection $p_2 \leqslant p_1$ such that

$$\|(x_2 - a_{2j})p_2\| \to 0$$
 as $j \to \infty$ and $\rho(p_1 - p_2) < \varepsilon/4$,

and so on.

Proceeding that way, we obtain a sequence $\{p_n\}$ of projections in M with $p_n \le p_{n-1}$ and $\rho(p_{n-1} - p_n) < \varepsilon/2^n$.

Put $p = \lim_{n \to \infty} p_n$. p is a projection in M and, since

$$\rho(p_n) > \rho(p_{n-1}) - \varepsilon/2^n > \cdots > \rho(q) - (\varepsilon/2 + \cdots + \varepsilon/2^n) > \rho(q) - \varepsilon$$

we have $\rho(p) \ge \rho(q) - \varepsilon$. Evidently, $p \le q$ and, for each n,

$$||(x_n - a_{n,i})p|| \le ||(x_n - a_{n,i})p_n|| \to 0 \text{ as } j \to \infty,$$

which states our claim.

Now, let $\varepsilon_n \downarrow 0$ and let us find, according to the above considerations (with q = 1), a projection f_1 in M such that $||(x_n - a_{nj})f_1|| \to 0$ as $j \to \infty$, for each n, and $\rho(1 - f_1) \le \varepsilon_1$.

Putting $q = 1 - f_1$ in the first part of the proof, we can find a projection $f_2 \le 1 - f_1$ such that

$$\|(x_n - a_{nj})f_2\| \to 0 \text{ as } j \to \infty,$$

for each n, and $\rho(1 - (f_1 + f_2)) \le \varepsilon_2$.

Having found the projections f_1, \ldots, f_{k-1} , we can find a projection $f_k \le 1 - (f_1 + \cdots + f_{k-1})$ such that

$$\|(x_n - a_{nj})f_k\| \to 0 \text{ as } j \to \infty,$$

for each n, and $\rho(1-(f_1+\cdots+f_k)) \le \varepsilon_k$. Thus, we obtain a sequence $\{f_k\}$ of projections in M, pairwise orthogonal and such that $||(x_n-a_{nj})f_k|| \to 0$ as $j \to \infty$, for each n, k, and $\rho(f_1+\cdots+f_k) \ge 1-\varepsilon_k$.

To construct the desired exhaustion, put $e_k = f_1 + \cdots + f_k$. We have $e_k \le e_{k+1}$ and $\rho(e_k) \ge 1 - \varepsilon_k \to 1$ as $k \to \infty$, which shows that $\{e_k\}$ is an exhaustion. Moreover, for each n, k,

$$\|(x_n - a_{n,i})e_k\| \le \|(x_n - a_{n,i})f_1\| + \dots + \|(x_n - a_{n,i})f_k\| \to 0$$
 as $j \to \infty$,

which completes the proof.

Now, we are in a position to prove the main result of this section.

THEOREM 4. Let α be a positive linear mapping of M into itself such that $\alpha(1) = 1$. Then there exist a subset σ_0 of full measure in the state space σ and a transformation $\tilde{\alpha}$: $\sigma_0 \to \sigma$ induced by α .

PROOF. Let $A_0 = \{a_1, a_2, ...\}$ be a countable norm-dense subset of A. Put $x_n = \alpha(a_n)$. By virtue of Theorem 3, there exist a sequence $\{a_{nj}\} \subset A$ and an exhaustion $\{e_k\}$ in M, such that $||(x_n - a_{nj})e_k|| \to 0$ as $j \to \infty$ for each n, k.

Let us define σ_0 by the equality

$$\sigma_0 = \bigcup_{k=1}^{\infty} \left\{ \overline{\varphi | A \colon \varphi \in M_{\bullet}^+, \|\varphi\| = 1, s(\varphi) \leqslant e_k} \right\},\,$$

where $s(\varphi)$ is the support of φ and the closure is taken with respect to the weak*-topology of $\sigma \supset \sigma_0$.

Let $\psi \in \sigma_0$. Then $\psi(a) = \lim_{\lambda \in \Lambda} \psi_{\lambda}(a)$ for all $a \in A$, and $\psi_{\lambda} = \varphi_{\lambda} | A$, where $\varphi_{\lambda} \in M_{*}^{+}$, $\|\varphi_{\lambda}\| = 1$ and $s(\varphi_{\lambda}) \leq e_{K}$ for some fixed K and all $\lambda \in \Lambda$.

The representation of ψ_{λ} as $\varphi_{\lambda}|A$ is unique since the equality $\varphi_{\lambda}^{(1)}|A = \varphi_{\lambda}^{(2)}|A$ yields $\varphi_{\lambda}^{(1)} = \varphi_{\lambda}^{(2)}$ because $\varphi_{\lambda}^{(1)}$ and $\varphi_{\lambda}^{(2)}$ are normal and A is σ -weakly dense in M. We are going to define $\tilde{\alpha}$ on σ_0 by

$$(\tilde{\alpha}\psi)(a) = \lim_{\lambda \in \Lambda} \varphi_{\lambda}(\alpha(a)).$$

First, we shall show that $\tilde{\alpha}\psi$ is well defined for all $a_n \in A_0$.

Given $\varepsilon > 0$, with fixed n and K as above, we find a number j_0 such that $\|(x_n - a_{nj_0})e_K\| < \varepsilon/3$. Since $a_{nj_0} \in A$, we have $\psi(a_{nj_0}) = \lim_{\lambda \in \Lambda} \psi_{\lambda}(a_{nj_0})$, which implies that

$$\left| \varphi_{\lambda'}(a_{nj_0}) - \varphi_{\lambda''}(a_{nj_0}) \right| < \varepsilon/3$$

for sufficiently large λ' , λ'' . For these λ' , λ'' , we have

$$\begin{aligned} |\varphi_{\lambda'}(\alpha(a_n)) - \varphi_{\lambda''}(\alpha(a_n))| &= |\varphi_{\lambda'}(x_n) - \varphi_{\lambda''}(x_n)| \\ &\leq |\varphi_{\lambda'}(x_n) - \varphi_{\lambda'}(a_{nj_0})| + |\varphi_{\lambda'}(a_{nj_0}) - \varphi_{\lambda''}(a_{nj_0})| \\ &+ |\varphi_{\lambda''}(a_{nj_0}) - \varphi_{\lambda''}(x_n)| \\ &\leq 2 \|(x_n - a_{nj_0})e_K\| + |\varphi_{\lambda'}(a_{nj_0}) - \varphi_{\lambda''}(a_{nj_0})| \end{aligned}$$

since $s(\varphi_{\lambda'})$, $s(\varphi_{\lambda''}) \le e_K$. The above estimation yields the inequality $|\varphi_{\lambda'}(\alpha(a_n)) - \varphi_{\lambda''}(\alpha(a_n))| < \varepsilon$ proving the existence of $\lim_{\lambda \in \Lambda} \varphi_{\lambda}(\alpha(a_n))$.

Now let a_n , a_m be arbitrary elements of A_0 . We have

$$\begin{aligned} \left| (\tilde{\alpha}\psi)(a_n) - (\tilde{\alpha}\psi)(a_m) \right| &= \lim_{\lambda \in \Lambda} \left| \varphi_{\lambda}(\alpha(a_n)) - \varphi_{\lambda}(\alpha(a_m)) \right| \\ &\leq \lim_{\lambda \in \Lambda} \left\| \varphi_{\lambda} \right\| \left\| \alpha(a_n) - \alpha(a_m) \right\| \leq \|a_n - a_m\|. \end{aligned}$$

The last inequality shows that $\tilde{\alpha}\psi$ is uniformly continuous on A_0 and thus has the unique continuous extension to A. It is standard to show that this extension can be defined by the limiting procedure.

The fact that $\tilde{\alpha}\psi$ is a state on A is almost trivial. That $\tilde{\alpha}$ is induced by α is a consequence of the definition of $\tilde{\alpha}\psi$ as $\lim_{\lambda \in \Lambda} (\alpha^* \varphi_{\lambda}) | A$ and the fact that the set

$$\bigcup_{k=1}^{\infty} \left\{ \varphi \middle| A \colon \varphi \in M_{\bullet}^+, \|\varphi\| = 1, s(\varphi) \leqslant e_k \right\}$$

is weakly*-dense in σ_0 .

Now, let **Z** be the set of all integers and **N** the set of nonnegative integers. Consider the semigroup $\{\alpha^n: n \in \mathbb{N}\}$ or the group $\{\alpha^n: n \in \mathbb{Z}\}$ for α invertible. We have

THEOREM 5. There exists a family $\{\tilde{\alpha}_n: n \in \mathbb{N} \ (or \ \mathbf{Z})\}$ of transformations defined on a subset of full measure $\sigma_0 \subset \sigma$ with values in σ , induced by $\{\alpha^n: n \in \mathbb{N} \ (or \ \mathbf{Z})\}$ in the sense that

$$\tilde{\alpha}_n(\varphi|A) = ((\alpha^n)^*\varphi)|A$$

for $\varphi \mid A$ in a weakly*-dense subset of σ_0 .

The proof follows the lines of the proof of Theorem 4; the only differences lie in choosing the exhaustion $\{e_k\}$ for the sequence $x_{nm} = \alpha^n(a_m)$ and defining $\tilde{\alpha}_n \psi$ as

$$(\tilde{\alpha}_n \psi)(a) = \lim_{\lambda \in \Lambda} \varphi_{\lambda}(\alpha^n(a))$$
 for $\psi \in \sigma_0$.

4. Ergodic theorems. In this section we assume that α is a *-automorphism of M leaving ρ invariant. The starting point in our considerations is the following refinement of Lance's ergodic theorem [3], due to Petz [5].

THEOREM 6. There exists a norm-continuous linear projection $\hat{}$: $M \to M$ such that, for each x in M, the ergodic means

$$S_N(x) = \frac{1}{N} \sum_{k=0}^{N-1} \alpha^k(x)$$

converge to \hat{x} q.u.

Let us observe that, apart from its original proof, this result is an immediate consequence of Lance's theorem and the above-mentioned result of Paszkiewicz since $||S_N(x)|| \le ||x||$.

PROPOSITION 7. For each $\varepsilon > 0$ and each projection q in M, there exists a projection $p \leqslant q$ in M such that for each $a \in A$, $||(S_N(a) - \hat{a})p|| \to 0$ and $\rho(q - p) \leqslant \varepsilon$.

PROOF. Let $\varepsilon > 0$, let a projection q be given, and let $A_0 = \{a_1, a_2, \dots\}$ be a countable norm-dense subset of A. According to Theorem 6, we can find a projection $p_1 \le q$ such that

$$||(S_N(a_1) - \hat{a}_1)p_1|| \to 0$$
 and $\rho(q - p_1) < \varepsilon/2$.

Again using Theorem 6, we find a projection $p_2 \le p_1$ such that

$$||(S_N(a_2) - \hat{a}_2)p_2|| \to 0$$
 and $\rho(p_1 - p_2) < \varepsilon/4$.

Proceeding further in this way, we find a sequence $\{p_n\}$ of projections in M with the properties: $p_n \le p_{n-1}$, $||(S_N(a_n) - \hat{a}_n)p_n|| \to 0$ as $N \to \infty$ and $\rho(p_{n-1} - p_n) < \varepsilon/2^n$.

Put $p = \lim_{n \to \infty} p_n$. We have $p \le q$ and since

$$\rho(p_n) > \rho(p_{n-1}) - \varepsilon/2^n > \cdots > \rho(q) - (\varepsilon/2 + \cdots + \varepsilon/2^n),$$

we obtain that $\rho(p) \ge \rho(q) - \varepsilon$. Moreover, for each $a_n \in A_0$,

$$\|(S_N(a_n) - \hat{a}_n)p\| \le \|(S_N(a_n) - \hat{a}_n)p_n\| \to 0 \text{ as } N \to \infty$$

and the norm-density of A_0 in A together with the norm-continuity of $\hat{}$ yield the claim.

The following theorem answers one of the questions raised in [7] in a rather general form.

THEOREM 8. There exists an exhaustion $\{e_n\}$ in M such that, for each a in A,

$$\|(S_N(a) - \hat{a})e_n\| \to 0$$
 as $N \to \infty$ for $n = 1, 2, \dots$

PROOF. Take a sequence of positive numbers $\{\varepsilon_n\}$, $\varepsilon_n \downarrow 0$. By virtue of Proposition 7, there is a projection p_1 in M such that, for each a in A,

$$\|(S_N(a)-\hat{a})p_1\| \to 0$$
 and $\rho(1-p_1) \leqslant \varepsilon_1$.

Again using Proposition 7, we find that there is a projection $p_2 \le 1 - p_1$ such that, for each a in A,

$$\|(S_N(a)-\hat{a})p_2\| \to 0$$
 and $\rho(\mathbf{1}-(p_1+p_2)) \leqslant \varepsilon_2$.

Proceeding further that way, we obtain a sequence $\{p_n\}$ of projections in M with the properties: $p_n \leq 1 - (p_1 + \cdots + p_{n-1})$, $||(S_N(a) - \hat{a})p_n|| \to 0$ as $N \to \infty$ for each a in A, and $\rho(1 - (p_1 + \cdots + p_n)) \leq \varepsilon_n$. Put $e_n = p_1 + \cdots + p_n$. We have $e_n \leq e_{n+1}$ and $\rho(e_n) \geq 1 - \varepsilon_n \to 1$ as $n \to \infty$, which shows that $\{e_n\}$ is an exhaustion. Moreover, for each a in A and every n,

$$||(S_N(a) - \hat{a})e_n|| \le ||(S_N(a) - \hat{a})p_1|| + \cdots + ||(S_N(a) - \hat{a})p_n|| \to 0$$

as $N \to \infty$, which completes the proof.

Let f be an arbitrary projection in M. A sequence $\{e_n\}$ of projections in M is called a conditional exhaustion with respect to f if $e_n \uparrow f$.

Following the lines of the proof of the above theorem, we could prove

PROPOSITION 9. For each projection f in M, there exists a conditional exhaustion $\{e_n\}$ such that, for each a in A,

$$\|(S_N(a) - \hat{a})e_n\| \to 0$$
 as $N \to \infty$ for $n = 1, 2, \dots$

As was stated before, there exist a subset σ_0 of σ ,

$$\sigma_0 = \bigcup_{n=1}^{\infty} \left\{ \overline{\varphi | A \colon \varphi \in M_{+}^+, s(\varphi) \leqslant e_n} \right\}$$

for some exhaustion $\{e_n\}$ in M, and a family of transformations $\{\tilde{\alpha}_n: n = 0, \pm 1, \dots\}$ defined on σ_0 , induced by α . Our first goal is to reformulate Theorem 8 in the following way:

PROPOSITION 10. There exists an exhaustion $\{f_n\}$ in M such that $f_n \leq e_n$ and, for each a in A,

$$\|(S_N(a) - \hat{a})f_n\| \to 0$$
 as $N \to \infty$ for $n = 1, 2, \dots$

PROOF. Put $p_n = e_n - e_{n-1}$ ($e_0 = 0$). Then $\sum_{n=1}^{\infty} p_n = 1$, $p_n p_m = 0$ for $n \neq m$ and $e_n = \sum_{k=1}^{n} p_k$. For each p_n , we find, on account of Proposition 9, a conditional exhaustion $\{q_{mn}\}_{m=1}^{\infty}$ such that $q_{mn} \uparrow p_n$ as $m \to \infty$ and, for each a in A,

$$||(S_N(a) - \hat{a})q_{mn}|| \to 0 \text{ as } N \to \infty, m = 1, 2, \dots$$

Let $f_m = \sum_{n=1}^m q_{mn}$. f_m is a projection as a sum of orthogonal projections. Moreover

$$f_m = \sum_{n=1}^m q_{mn} \leqslant \sum_{n=1}^m q_{m+1n} \leqslant \sum_{n=1}^{m+1} q_{m+1n} = f_{m+1}$$

and

$$f_m = \sum_{n=1}^m q_{mn} \leqslant \sum_{n=1}^m p_n = e_m.$$

To prove that $f_m \uparrow 1$, take an arbitrary $\varepsilon > 0$. We shall show that there exists a number m' such that $\rho(f_{m'}) \ge 1 - 2\varepsilon$ which is enough since the sequence $\{f_m\}$ is nondecreasing.

Choose a number m_0 such that $\sum_{k=1}^{m_0} \rho(p_k) \ge 1 - \varepsilon$. Next, choose numbers m_k , $k = 1, ..., m_0$, such that

$$\rho(q_{m,k}) \geqslant \rho(p_k) - \varepsilon/2^k$$
 for $k = 1, ..., m_0$

which is possible because $q_{mn} \uparrow p_n$. Put $m' = \max(m_0, \dots, m_{m_0})$. We have

$$\rho(f_{m'}) \geqslant \rho(q_{m_1 1}) + \cdots + \rho(q_{m_{m_0} m_0})$$

$$\geqslant \rho(p_1) + \cdots + \rho(p_{m_0}) - (\varepsilon/2 + \cdots + \varepsilon/2^{m_0}) \geqslant 1 - 2\varepsilon,$$

the first inequality being a consequence of

$$q_{m''n} \ge q_{m'''n}$$
 for $m'' \ge m'''$, $n = 1, 2, ...$

The proof of the proposition has thus been completed.

Our last theorem provides a solution to the main problem raised in [7].

THEOREM 11. For almost every state ψ in σ , the following limit, in the weak*-topology of σ , exists:

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N-1}\tilde{\alpha}_n\psi.$$

PROOF. Let σ_0 with the exhaustion $\{e_n\}$ be as defined before Proposition 10 and let $\{f_n\}$ be the exhaustion whose existence was proved in Proposition 10. Put

$$\sigma_0' = \bigcup_{n=1}^{\infty} \left\langle \overline{\varphi | A \colon \varphi \in M_{\bullet}^+, \|\varphi\| = 1, s(\varphi) \leqslant f_n} \right\rangle,$$

where the closure is taken with respect to the weak*-topology of σ . σ'_0 is of full measure and, for an arbitrary element ψ of σ'_0 , we have $\psi(a) = \lim_{\lambda} \varphi_{\lambda}(a)$ for each a in A, where $\varphi_{\lambda} \in M_{*}^{+}$, $\|\varphi_{\lambda}\| = 1$ and $s(\varphi_{\lambda}) \leq f_{n_0}$ for a fixed n_0 and all λ .

For each a in A and positive integers N_1 , N_2 , we have, on account of Theorem 5,

$$\left| \frac{1}{N_{1}} \sum_{n=0}^{N_{1}-1} (\tilde{\alpha}_{n} \psi)(a) - \frac{1}{N_{2}} \sum_{n=0}^{N_{2}-1} (\tilde{\alpha}_{n} \psi)(a) \right|$$

$$= \lim_{\lambda} \left| \frac{1}{N_{1}} \sum_{n=0}^{N_{1}-1} \varphi_{\lambda}(\alpha^{n}(a)) - \frac{1}{N_{2}} \sum_{n=0}^{N_{2}-1} \varphi_{\lambda}(\alpha^{n}(a)) \right|$$

$$= \lim_{\lambda} \left| \varphi_{\lambda} \left(\left(S_{N_{1}}(a) - \hat{a} \right) f_{n_{0}} - \left(S_{N_{2}}(a) - \hat{a} \right) f_{n_{0}} \right) \right|$$

$$\leq \left\| \left(S_{N_{1}}(a) - \hat{a} \right) f_{n_{0}} - \left(S_{N_{2}}(a) - \hat{a} \right) f_{n_{0}} \right\|.$$

By virtue of Proposition 10, the last expression tends to zero as N_1 , $N_2 \to \infty$, and our result follows from the completeness of σ in the weak*-topology.

REFERENCES

- 1. O. Bratelli and D. W. Robinson, Operator algebras and quantum statistical mechanics. I, Springer-Verlag, Berlin and New York, 1979.
- 2. M. S. Goldstein, Theorems on almost everywhere convergence in von Neumann algebras, J. Operator Theory 6 (1981), 233-311. (Russian)
- 3. E. C. Lance, Ergodic theorems for convex sets and operator algebras, Invent. Math. 37 (1976), 201-214.
 - 4. A. Paszkiewicz, Convergences in W*-algebras, J. Funct. Anal. (to appear).
- 5. D. Petz, Quasi-uniform ergodic theorems in von Neumann algebras, Bull. London Math. Soc. 16 (1984), 151-156.
- 6. C. Radin, Automorphism of von Neumann algebras as point transformations, Proc. Amer. Math. Soc. 39 (1973), 343-346.
 - 7. _____, Pointwise ergodic theory on operator algebras, J. Math. Phys. 19 (1978), 1983–1985.
 - 8. M. Takesaki, Theory of operator algebras. I, Springer-Verlag, Berlin and New York, 1979.

Institute of Mathematics, Łódź University, Banacha 22, 90 - 238 Łódź, Poland