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FREQUENCY ENTRAINMENT FOR ALMOST PERIODIC

EVOLUTION EQUATIONS

JAMES MURDOCK

Abstract. A theorem of Massera stating that periodic solutions of equations are

(under a simple hypothesis) entrained is generalized to limit periodic equations and

(with a weak definition of entrainment) to almost periodic equations. An error is

explained in a stronger result claimed by Cartwright.

Forbat [3, p. 166n; 4, p. 30] has given an example of a system of differential

equations, periodic in time, having a solution which is not entrained to the "forcing"

frequency. The system is

x = y, y = -x + ix2 + y2 - l) sin fît,

which admits the solution x = sin t, y = cos t whose frequency 1 is incommensura-

ble with (not entrained to) the frequency y2 of the system itself. This solution passes

through no point at which the "forcing" with frequency -J2 is felt. A little-known

theorem of Massera, contained in [5], states that this is the only way in which

entrainment can fail. The purpose of this paper is to give a proof of Massera's

theorem which generalizes to limit periodic systems (and, to a lesser extent, to almost

periodic (a.p.) systems), to evolution equations in Banach spaces, and to delay

differential equations. Cartwright [2] has claimed a theorem much stronger than

ours, but her theorem is false, as we shall show. (This does not affect her much

deeper theorem, which is the main result of [2], and which has now been proved by a

variety of methods. This theorem is complementary to ours in a way which will be

discussed.)

Lemma. Let B be a Banach space and let f: R2 -* B be an a.p. function of two

variables (in the sense of [1]). Let M and N be modules of real numbers over the

rationals such that M contains the frequencies of f(s,t) in s, and N contains the

frequencies in t; that is, such that the Fourier series of f can be written

f(s,t)~   E  a^^'K

Furthermore, suppose that

(i) There is at least one value of s for which f(s, t) is not independent oft.

(ii) f(t, t), which is automatically an a.p. function, has its frequencies contained in

M.
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Then the intersection of M and TV is larger than (0), and if, in addition,

(iii) M and TV each have a single generator over the rationals,

then M = TV.

(Remark. Since f(s,t) is a uniform limit of trigonometric polynomials in two

variables by the Approximation Theorem in [1], it follows that f(t, t) is a uniform

limit of trigonometric polynomials in one variable and is therefore a.p. as stated in

(ii).)
Proof. Hypothesis (i) implies that there exists a pair (a, v) with v j= 0 such that

a    ¥= 0. According to (ii) there is an expansion

/(m)~ E V""

so that

0~E(«„o-*>""+ E a^+'\

Suppose now that M n N = {0}. In this case each term in the last equation has a

frequency different from every other term, so that the expression (as it stands,

without combining any terms) is the Fourier series of an a.p. function. It follows

from the uniqueness theorem for a.p. functions that a 0 = b^ and a = 0 for v + 0.

Since this contradicts the existence of aM„ # 0 with v ¥> 0, we conclude that

M n TV ¥= (0). It follows immediately that M = TV in the case where (iii) holds.

Q.E.D.
Remark. The example (with B = C, the complex numbers)

fis,t) = exp{,[(l + i/2)s+{2 + )Í3)t}} -exp(/[(2 + fj)s +(1 + i/3)r]}

shows that neither M C TV nor TV C M follows from (i) and (ii) alone. Here (ii) is

satisfied since f(t, t) = 0; M has generators 1 and fl ; TVhas generators 1 and ]/J.

Theorem. Let F: B X R —> B be a continuous mapping such that F(u,t) is a.p. in

t uniformly with respect to u for \\u\\ < K. Let N be the smallest module containing the

frequencies of F. Let <p: R -» B be an almost periodic solution, with ||<f>(f)ll < ^> °f

the differential equation ii = F(u,t), and let M be the smallest module containing its

frequencies. Then either

(a) F(d>(s),t) is independent of t for every s or

(b) M n N * {0}.

Furthermore, if F and <t> are periodic or (more generally) limit periodic, then either (a)

holds or M — N (in which case we say the solution $ is entrained).

Proof. It follows from remarks in Cartwright [2, pp. 172-173] that the function

f(s, t) = F(<j>(s), t) is an a.p. function of two variables with frequencies contained in

M (for s) and TV (for t). Since <i> is a solution of the differential equation,

«MO = /(?> 0. which is a.p., as remarked after the lemma. If an a.p. function has an

a.p. derivative, the module of the derivative is contained in the module of the

function; therefore the module of f(t,t) is contained in M. We have shown that /

satisfies the general requirements of the lemma and also hypothesis (ii). Now if (a) of
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the theorem is denied, then (i) of the lemma is affirmed, and (b) follows. In the limit

periodic case, (iii) of the lemma also holds and the conclusion is stronger.   Q.E.D.

Remark 1. The significance of M n TV # {0} is that at least one frequency

present in the differential equations must also appear in the solution. In the periodic

case M = TV means that the least periods have a rational ratio, not that they are

equal.

Remark 2. Under essentially the same hypothesis Cartwright [2] proves that if

B = R" then (in the setting of our theorem) M is contained in a module generated

by TV and at most n — 1 additional elements. This upper bound on M has been

proved in several ways (for instance [6]) and is certainly true. However, she also

concludes that the frequencies of F are integrally dependent on those of $, implying

TV C M. Her error occurs in the second sentence on p. 174, where she does not take

account of cancellations which may occur, as in our example following the proof of

the lemma. But even apart from this her result is not plausible because F could have

frequencies that do not appear along the orbit of <i>, and no one would expect these

to appear in <i>. It remains an open question whether F can have frequencies on the

orbit of <#> which do not appear in <j>, or, in other words, whether the cancellations

occurring in our example can occur in a differential equations context. Such an

example does not yet exist.

Remark 3. It is essential to the argument that F be continuous and defined on all

of B (or at least all of ||«|| < K). For instance, the argument is applicable to a heat

equation

ut = uxx + c?(M> x, t)    for0<xs£l

if formulated for u in C2 or a suitable Sobolev space but not for « in a space in

which a2/ax2 is densely defined and unbounded.

For finite-dimensional delay differential equations it is probably simpler to

modify the argument so that it is directly applicable rather than to reformulate the

equation as a differential equation in a Banach space. For example, suppose <|>(i) is

a periodic solution of ii = F(u(t), u(t - t), t) with F periodic in /. Taking f(s, t)

= F(<j>(s),d>(s — r),t), we see that the solution must be entrained unless this

function is independent of / for all s; in particular, any periodic solutions which

exist must be entrained if Ft is nowhere vanishing.
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