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A GAUSSIAN MEASURE FOR CERTAIN CONTINUED FRACTIONS

SOFIA KALPAZIDOU

Abstract. We solve a variant of Gauss' problem for grotesque continued fraction

using the approach of dependence with complete connections.

1. Introduction. For a very readable account of Gauss' introduction of a measure

to study ordinary continued fraction expansions, see [3]. In [7] Rieger introduced the

grotesque continued fraction expansion for an irrational number y of the interval

Y = [G - 2, G], with G = (v/5 + l)/2, as follows. Let ex(y) = signy. Then exy~1

can be written uniquely as exy~x = ax(y) + T(y) with a, > 1, ax = 1 (mod2).

Because T(y) e Y the above process can be inductively continued and as a

consequence we get

(1.1)
h(y) h(y)

«i(y) + i(y)
<*i(y) +

<*iiy) + T(y)

Ei(j), e2(y)>---

«i(>0, oí2iy),...

where otn e TV, a„ = 1 (mod2), en e {-1,1), a„ + e„ > 1, n = 1,2,_The expres-

sion (1.1) is called the grotesque continued fraction expansion of y. The iterated maps

of T are

T"y =
«„+i(.y).---

i = l,2,.

with T0^ = y.

Let /a be a nonatomic probability measure on the rj-algebra of the Borel sets of Y

and define

K,(w)- K,(w,/i)-/»(r"<w),        « = 1,2,...,

with (^(w) = jn([G - 2,w)). Here, using the approach of dependence with complete
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connections, we find the limit

lim u(T" < w) = 1
n—* oc

and estimate the error (T" < w) — 1 to be 0(q"). Our result generalizes and

improves that which Rieger obtained using another method (see [8]) for p = (1/2)X,

where X is the Lebesgue measure, with convergence rate of O(q^). Throughout we

need the notation

TV* = {1,2,3,...},

TV= {0,1,2,...},

R = the set of real numbers,

[a] = the integral part of a e R,

G = (v/5" + l)/2,

Y = the set of irrationals of [G — 2, G],

38 y = the a-algebra of the Borel sets of Y,

iP( X) = the power set of X,

L(Y) = the space of the real-valued and Lipschitz functions defined on Y.

2. The  Gauss-type relation.  In the following we require the definitions and

terminology of [2, 4 and 5]. Define

X = {(x,e): x e TV*, x = 1 (mod2), |e|= 1, x + e > l}.

Then we have

Proposition 2.1 (Gauss-type relation). For each n e N,Vn satisfies the relation

(v,f)e x

Proof. We remark that

E.   . ,
'T'A    _    _

,    -r.n + 1
*n + l   ^   l

Therefore

K, + i(*) = pL     \,.,<T"<an + x + w a„+1 + G-2

'I"-^—-,<T"<
«„ + 1 + G-2 an + 1 + w

and the desired result follows.

We now assume that V0' exists and is bounded (u has bounded density). By

induction we have that V¿, n g TV *, exist and are bounded as well. By differentiat-

ing the above Gauss-type equation we obtain

(2.1) k;+1(w)=   £    /   1     v;
(x,e^x(x+w)2     "\X + W
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Let us introduce the functions /„ in (2.1) where

/» = ̂ 4,       neN,
p(w)

with p(w) = \/(w + 1), we [G- 2, G]. Then (2.1) becomes

f" + ÁW) = {x^sX(W+-x)(W + x + e)f"\TT^

Proposition 2.2. The function

_/       / \\ w + I
P(w,(x,e)) = -.-r-,-r

v     v       "      (w + x)(w + x + e)

defines a transition probability function from (Y, 98 Y) to (X, 3P(X)).

Proof. We have to verify that

(2.2) £ 7>(w,(x,e)) = l

U.£)

for all we Y. To this end we write the left side of (2.2) as

1 1
(w + i)    E

v=1.3,5,.

+
w + x      w + x + 1 / Tí      \w + x — 1      w + x

x = 3,5,...

and the desired equality follows.

Proposition 2.2 allows us to consider the random system with complete connec-

tions (RSCC) (see [2])

(2.3) {(Y,<3f),(X,3f),u,P}

where

<&=3SY,        3C=@(X),        u{w,{x,e))
x + w

P(w,(x,e))
(w + x)(w + x + e)

Further, we denote by U the associated Markov operator of the RSCC (2.3) with the

transition probability function Q(-, ■). Then Q"(-, ■) will be the transition probabil-

ity function after n paths of the same Markov chain (see [4]).

3. The ergodicity of the random system. Let us consider the norm || ■ \\L defined on

L(Y)by

||/IL-sup|/G0|+  sup   \f(y'\-f\yp\,       feL(Y).
ye y y'*/-      \y -y I

As is well known, (L(Y), \\ ■ \\L) is a Banach algebra. The following proposition can

be proved in the same manner as in [5].

Proposition 3.1. The RSCC (2.3) is uniformly ergodic.
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Moreover, Theorem 2.1.57 of Iosifescu-Theodorescu [2] implies that Q"(-, ■)

converges uniformly to a probability Qx and that there exist two positive constants

q < 1 and c such that

(3.1) \\Unf- U^fh^cq"

for all n e TV*, /e L(Y), where

(3.2) V*f(-)-f f(y)Q"(-,dy),       U»f= f f(y)Q^idy).

By virtue of Lemma 2.1.58 of Iosifescu-Theodorescu [2], U has no eigenvalues of

modulus 1 other than 1.

Let B(Y,'3f) be the Banach space of all real-valued bounded and ^-measurable

functions defined on Y with the uniform norm |i|/| = supv,ey|t//(>')|. Then, taking

into account Proposition 2.1.6 of [2], the adjoint U* of the operator U (with the

transition probability function Q(-, ■)) in B(Y,<&) is

(U*p)(-)=f Q(y,-)pidy),
Jy

where p belongs to the Banach space of all bounded additive set functions on ty

with bounded variation with the norm given by the total variation.

By virtue of Proposition 3.1, Theorem 3.3.3 of [2] says that G"00 is the only

eigenvector of U * and as a consequence

(3.3) fG    Q(y,B)Q~(dy) = Q-(B)
JG-2

for all the Borel sets of Y.

Further, we determine the form of Qx.

Proposition 3.2. The probability Qx has the density

(3.4) p(w) = —L_,       we[G-2,G]

with the normalizing factor 1/(3 logG).

Proof. We have

Qiy,B)=        ¿Z      P(y,(x,e)),
(i,t)el

f(i+>r'Ej

for all y e Y and B e 38 y. By virtue of uniqueness of G"°° we have to show that the

measure with density p defined in (3.4) satisfies the equality (3.3). Because the

intervals [u, G], 0 < m < G, and [G — 2, v], G — 2 < v < 0, generate 38Y, it suffices

to verify the equality (3.3) only for B = [u, G] and B = [G — 2, v].
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Let us consider B = [u, G], 0 < u < G. Suppose first that [u x] is an even number.

Then

fG    Q(y,[u,G])p(y)dy=(
JG-2 JC

G

G-2
E        P(y,(x,l))\p(y)dy

A = l(mod2) I
««(A+vr'siG

/
2  \     ïsi (mod2)

l<v<[«_1-C]

p{y)dy

-JC«--[«-i-i
\

E    ^,(*,i))
x = l

\ a* 1 (mod 2)

p{y)dy

f

[u-']+l

E    i(>,(^i))
A = l

\ v si (mod 2)

p(y)dy

I

»-'-[»-'l-i y+1      y+2

1 1
F ... +

1

G<-'-[„-']-i [_J_1
7G_2 \ v + 1     y -i-

y+[u-x]-l     y-[u~x]

1 1

ÏÏ   *

\y

i Gu~l i   G +1    r0 i \j
= log(G-i)(M- + i)=log^T = i„ '<>>*

If [«"'] is odd we obtain

.y + 2 J+[M-1] + 1        _y+[M-1] + 2
*

I6'    Q(y,[u,G})p(y)dy=f"-[u'
JG-2 JG-2

E    p(^,(*,i))
A = l

\ A-si(mod2)

p(y)dy

+ Í
/[»-']-2

E p(^,(x,i))

=/;JG-

»-'-[«-']  \    x.x

'-(«"M/       1

2

PÍjO^-V

/

_y + 1      >> + 2

1 1

+ ... +
1 1

»-■-[»-■i \y + i    y + 2
+ •■ • +

y+f.«'1]    j+[«"'] +1

i i

*

y+[u~x]-2      y+[u~l]-l
dy

Finally, the proof for B = [G - 2, u], G - 2 < u < 0, is similar.

4. The Gauss-type theorem. Now we are prepared to find the limit of p(T" < w)

as n -* oo and the rate of convergence.
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Proposition 4.1. If p has a Riemann integrable density, then

lim p(T" < w) = ——— log(G(w + 1)),        we[G- 2,G].
n -> oc i lOg U

If the density of p is a Lipschitz function, then there exist two positive constants c

andq < 1 such that for all w e [G - 2,G], n e TV*,

AT" < w) = 3^(1 + V)log(G(w + 1)),

where 8 = 6(p, n,w) with \6\ < c.

Proof. If V¿ is a Lipschitz function, then f0 e L(Y). By virtue of (3.2) we have

v~fo = Cjo(y)Q«(dy) = j±ë.

Taking into account (3.1) there exist two constants c and q < 1 such that

\\U% - t/°%\\L < cq"    for all n e TV*.

Further, consider C(T) to be the metric space of real continuous functions defined

on Y with the norm | • | = sup| • |. As L(Y) is a dense subset of C(Y) we have

(4.1) lim |(t/B-í7")/0|=0
n-+ oo

for all /0 e C(Y). Therefore (4.1) remains valid for measurable /0 that are Q°°-

almost surely continuous, that is, for Riemann-integrable /0.

We have

lim p(T"<w)=  lim   f     U"f0(u)- p(u)du= ..l      C    p(u) du
« — oc n->rx>Jc-2 3 lOgG JG_ 2

1        ,       W + l 1       ,      ,      . ,,,
■log7^T = TTZ^l°èiGiw + !))•

31ogG   °G-1      31ogG

Corollary 4.2. Let m e TV *, (/1; 7',),..., (im, y„,) e X be fixed and take

(*(•) = îA(-|«r = »',. £r =Á- r= l,...,»i).

77¡e«

A(T" + - < w\ar = i„ er- ir, r - l,...,m) - (1 + fl„9») j^log(G(W + 1))

w/2É>n? ôm = ö„,(«, w,sm) withsr =jr(ir + sr_x)'1, r = 1,...,m, s0 = 0.

Remark. The study of optimality of the rate of convergence in Proposition 4.1

remains an open question. Concerning this, Wirsing's method for the classical

Gauss' problem cannot be applied in our case because the corresponding operator is

not a positive one, see [10].
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