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^-WEIGHT PROPERTIES
OF REAL ANALYTIC FUNCTIONS IN R

NICOLA GAROFALO AND PAUL B. GARRETT

Abstract. In this note we show that given any real analytic function u in R", there

exists some p > 1 for which |«| is locally an A -weight of Muckenhoupt.

1. Statement of the results. Let w be a nonnegative L\X(W) function, w is said to

satisfy a reverse Holder inequality if for a certain 8 > 0 there exists a positive

constant C such that for every ball B c R"

/   i      , \V(1+«) -,

M (\T\fBwl+SdX) <C\B\fsWdX>

C and S being independent of B. Condition (1.1) is known to imply local integrabil-

ity of w~x, thus providing information on the zeros of w. In fact, it turns out that if

(1.1) holds, then w is an /^-weight of Muckenhoupt for some p e (1, + oo). By this

it is meant that

(,2)        f[mJ."'ÍHw4/"""")'"i<A'
where A is a positive constant, and the supremum is taken over the collection of all

balls B c R". From (1.2) it is clear that w cannot vanish on a set of positive

measure, and that w"1 e LeXlx for a certain e > 0 depending on p. The standard

reference for A -weights is the paper by Coif man and C. Fefferman [CF] to which

we refer the reader for a proof that (1.1) implies (1.2) (the converse is also true: if a

function w satisfies (1.2), then there exists a ô > 0 for which (1.1) holds; see

Theorem IV in [CF]).

Over the last few years the study of ^-weights has received increasing attention

from both real analysts and workers in partial differential equations. Several results

have been obtained which show the special link existing between weights and

properties of solutions to large classes of second order pde's. However, most of these

results deal with positive solutions, thus it is natural to ask what happens if such a

sign assumption is dropped. For instance, it is well known that if u is a positive

harmonic function, then there exists a S > 0 such that us is an /l2-weight, i.e., (1.2)

holds for us with p = 2. This can be seen by considering u = log« and showing
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that o e BMO (bounded mean oscillation). Then, the lemma of John and Nirenberg

[JN] assures that there exists a 8 > 0 such that eSv = us e A2. However, if m is a

harmonic function of variable sign, the above argument breaks down, and it is not a

priori obvious that |w| will satisfy an integrability condition like (1.2).

In this paper we show that given any real analytic function u in R", there exists

some p > 1 for which \u\ is locally an A -weight of Muckenhoupt. Ou proof is based

on Theorem 1 which says that the square of a real analytic function satisfies locally a

uniform doubling condition on balls (see (1.3)) and, moreover, that the supremum of

\u\ on a ball is controlled by an L2 average on a larger concentric ball (see (1.4)). In

Corollary 1 we show how these estimates can be used to prove (1.1). Since for a real

analytic function the devices from the theory of pde's are not readily available, we

have worked mainly with spherical harmonics and used some elementary facts about

holomorphic functions in C" and polynomials in one variable. The main point in the

proof of Theorem 1 is to get uniform bounds on the "Fourier coefficients" of u.

In what follows for r > 0 and x e R", we denote by Br(x) the open ball with

center at x and radius r, whereas Br(x) indicates its closure.

Theorem 1. For fixed 8X, S2 > 0 let u be a real analytic function in Bx+S +Si(0).

Then there exists a positive constant K, depending on u, such that

(i) for y e 7^(0), 0 < 2R < 1 + Ô, - \y\,

(1.3) í u2dx^K¡       u2dx;
JB2R(y) JBR{y)

(ii) for y e Bx(0), 0 < 2R < 1 + Ô, - \y\,

(1.4) sup w2< KR"f u2dx.
BR(y) JB2R(y)

Remark. K in (1.3) and (1.4) cannot be taken independent of u. This can be seen

considering the sequence of analytic functions in R2: uk(x, y) = Rez*, k e N.

The proof of Theorem 1 will be given in §2. Here we wish to show how it can be

used to prove

Corollary 1. Let u be a real analytic function in the ball Bx + S +s (0). Then there

exist a p e (1, oo) and a positive constant A, both depending on u, such that for every

y e 5,(0), and every R, with 0 < 27\ < 1 + 8X - \y\, we have

(1.5) Í-4-T-Í       \u\dx\[^r-(       \U\-l/i'-l'dx\'"1 <A.
'     \\BRiy)\}BR(yV      )\\BRiy)\hRiyV I

Proof of Corollary 1. According to what has been remarked above, all we need

to show is that for some 8 > 0 we have a reverse Holder inequality, i.e.,

(1.6) --— f        \u\l     dx\ < C  -^— (        \u\dx\
K    '       \\BRiy)\hRiy^ '        j        *   \\BRiy)\JBR(y)1 '    j
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with a constant C > 0 independent of BR(y) for y and R as in the statement of

Theorem 1. Indeed, we will show that (1.6) holds with \u\ replaced by u2, but this

will suffice. Now from (1.4) and (1.3) in Theorem 1 we obtain

(1.7) sup |w[< KA [       u2dx
BR(y) \\BR(y)\JBR(y)

where Kx depends on u but not on BR(y). Since trivially for every ¿5 > 0

/ , \ 1/2(1+8)

(1.8) / \u\ dx\ <  sup   « ,
\\BRiy)\JBR(y) J BR(y)

from (1.8) and (1.7) we obtain

/ 1 \ 1/2(1+8) / \l/2

(1.9) _L-f       \u\W+S)dx) <Kl-J—f       \u¡2dx)

for every 8 > 0. This means that u2 satisfies a reverse Holder inequality. Therefore

for some q e (1, oo) we have (see [CF])

(lio) {-A-vl   i«i2¿t)í—^[   i«r2/(9_1)(fcc),_1<^
v        '      \\BJ vlJ».„, ' LB„(vï  •/»_/..J   ' '

for every y e 7?,(0) and BR(y) with 27? < 1 + 8X - \y\. Ax, in (1.10), is a constant

depending on u. Schwarz inequality and (1.10) give

i(«-l)/2
1/2(i.ii)   i—^-f      \u\dx)l^—(      \u\1Aq-l)Y      <(Al)

If we now let p = (q + l)/2 > 1, (Ax)l/1 = A, then we can rewrite (1.11) as

(1.12)   Í—L-Í     \u\dx)l -f-i     i«!-1^-1^)'"^^.
V        '      \\BR(y)\hR{y^   '      /ll^(^)lVl)      ' /
This completes the proof of the corollary.

Remark. We wish to emphasize that (1.3) in Theorem 1 implies that if u vanishes

of infinite order at one point, then u must vanish identically.

It has been communicated to us subsequently by C. Kenig that R. Beals had

sketched a proof (using different methods) of a related result in a letter to him dated

April 13, 1982.

2. Proof of Theorem 1. In this section we prove some lemmas needed for the proof

of Theorem 1. We assume that u is a real analytic function as in the statement of the

theorem.

Lemma 1. There exists a 8 < 82 and a holomorphic function ü in

Q.= { z e C"||Rez|< 1 + 8X + 8, |Imz| < §},

such that ü | a n R„ = u.

Proof. For any given y such that \y\ < 1 + 8X, there exists a py > 0, py < 82,

such that u is represented by a convergent power series on the ball 7?p (y). Since

Bl+S(0) is compact we can find yx,---,yN in Bx+S(0) such that 7?1 + s(0)c

U?_,7i, (v,). Let B:,   ;'=1,...,N, be the balls in C" with the same radii and
/ ~ l     Pi-,   -\/7 J       J
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centers of Bp (yX Define holomorphic functions «, on 7Í- by the power series

defining u. As w, = u on B¡ D Bj n R", w, = «7 on 73, n ¿,. From this the lemma

follows.

In the sequel we will denote by Hd the space of spherical harmonics of degree d in

R". ad will indicate the dimension of 77^, and {^/¿ (: i = 1,..., ad) an orthonormal

basis for 77¿ with respect to the natural measure da on S"~x.

Lemma 2. There exists a X e (0, + oo), and for every y e 7?,(0) there exists

Cy^m) such that (with 8 as in Lemma 1)

(2.1) \cy;}(m)\^xd"i\8)m,

(2.2) Cy,)(m) = 0    form<d,

and the series T.jj%mCy}(m)\x\m^di{x) converges uniformly and absolutely to

u(x + y) for \x\ < 8/2.

Proof. For z e C, \z\ < 8, \y\ < 1 define an analytic function

(2.3) <#K*)=/      ü(zt+y)JZ<J)do(t),

where u is the extension of u constructed in Lemma 1. By known properties of

spherical harmonics,

(2.4) u(x + y) = Z<töK\x\)\x\4'4>ä.l(x),
d,i

the convergence being uniform for x in a compact set. For |j| < 1, <p$ has a power

series expansion with coefficients Cffl{ni) given by

(2.5) cfl{m) - (2«)"7 /    rim+l)ùitt + y)^h~tt)J°tt)d!;.
J\t\ = 28/3  JS"-¡

Since (see, e.g., [SW])

(2.6) sup   \^d,iU)\<]{a~d<nndn
íes""1

and u is uniformly continuous on

{ w e C"||Imw|< 28, |Rew|< 1 + 8X + 28),

we get (2.1) from (2.5) and (2.6). Further, the argument above shows that the series

in the statement of the lemma represents u(x + y) nicely. Finally, since 77¿ is

orthogonal to every lower-degree polynomial, one sees that Cy)\m) = 0 for m < d.

Lemma 3. There exist p, M > 0 such that for ally e 7?,(0) we have

(2.7) sup sup \cy}{m) | ̂  p

(n.b., Cy,\m) = 0form< d).

Proof. By the expansion in Lemma 2, for each y e 7?,(0) there is some nonzero

Cy¡\m). By (2.5), Cffi(m) is a continuous function of y. The conclusion follows by

a compactness argument.
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Lemma 4. Fix T > 0. Then there exist R0> 0, C<+oo, with R0 < 8, such that

for y e Bx(0) and 0 < r ^ R

(2.8) £   £|C#>(m)|r"<C>r+3/«.
m>ri/,i

Proof. As Cj^iw) = 0 for m < d, (2.8) follows from (2.1).

Lemma 5. Let R0 > 0, JVeN, a«i7 0<ju<a<ooZ>e two fixed numbers. Let Y

be the set of polynomials in r of degree < N whose coefficients C¡ satisfy the constraints

p < |Cy| < a. Then

(2.9) inf      inf 7T(2A,+">/"* |/>(r) |V— > 0.
0<Ä<S0Per ^o r

Proof. By the equivalence of topologies on a finite-dimensional vector space, it

suffices to show that

(2.10) sup     sup  f \P(r) \2r" — /(1\P{rR)\2R-2Nr"—<

where Y is the set of nonzero polynomials in Y. (2.10) is equivalent to

(2.11) sup     sup/1|7>(^)7v^2r4/i1|jP^)|2,'"7:<00-
o<r^r0P£Yjo   I    VK7 r    J0 r

Now let P(r) = ZjC/J. Then

(2-I2)     ^JKíK'-f«^^-
From (2.12), (2.11) follows, hence (2.9).

Lemma 6. Leí y ¿be /Äe se/ of nonzero polynomials of degree N in r. Then

(2.13) sup sup [2R \P(r) |V —/ f* \P(r) |V— < oo.

Proof. The ratio in (2.13) is

f2\P(rR)\2r^/f\PirR)\2r^.
j0 r    j0 r

Thus, the inner sup is independent of R > 0. Also the sup can be taken over the

compact subset of those P e Y such that f¿ \P(r)\2r"(dr/r) = 1. (2.13) then

follows.

Lemma 7. Let Y be as in Lemma 6. Then there exists C > 0 such that for R > 0,

P e Y,

(2.14) \P(0)\2 < CR-"fR\P{r)\2r"
2 „ilV
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Proof. If P(0) = 0, (2.14) is trivial. Therefore we consider only the set of those

P e Y such that P(0) = 1. By replacing P(r) by P(rR) we may take R = 1. But

then /,' \P(r)\2r"(dr/r) is a positive definite quadratic functional, so it assumes its

infimum at a unique P, with 7>(0) = 1. This yields (2.14).

We are now ready to give the

Proof of Theorem 1. Let M > 0 be as in Lemma 3, and R0 < 8 be as in Lemma

4. For y e Bx(0) and x e BRq/2(0) we set

",(*)-   E   Lcy?im)\x\"'^,ix),
(2.15) m*MdJ

m> M d,i

Then for 0 < 27? < 7\0, by Lemma 2 and the Schwarz inequality, we have

,2 , ,      ,    .,2        \

*\x\<lR \J\x\*í2R' J\x\i

(2.16)     /* \u{x + y)\2dx ^2\ f        \uv{x)f dx + ( \vy(x)
J\x\K2R \J\x\sí2R     " J\x\íí2R

We wish to show that each addend on the right-hand side of (2.16) is bounded

uniformly by a constant times /W<R \uv(x)\2 dx. Such a bound for the first addend

is given by Lemma 6. Lemmas 3, 4 and 5 imply that the same is true for the second

addend.

Now we show that there exists a uniform C < oo such that for 0 < 7? < 7? 0/2,

(2.17) f        \uY(x)\ dx < Ci        \u(x + y)\2dx.

Indeed, this is a consequence of an argument similar to the one just given to

bound the right-hand side of (2.16). Therefore, we have shown that there exists a

7?0 e (0,5) for which a C e (0, + oo) can be found, such that for y e 7?,(0) and

R e (0, R0/2]

(2.18) \ \u{x + y)\2dx < C [       \u(x + y) f dx.
•Vi<2R J\x\<R

On the other hand, if R is such that 7\0/2 <7\<1 + 8, - |_y| we have

dx
J\x\<2R J\x\

(2.19)

/ |m(x + v)| dx/ I        \u(x + y)
J\x\<2R J\x\<R

j |"(^)| dx/   inf     1 |«(x+_y)| dx.
•/Ui<l+«, yeB,(0)J\x\<Rn

That the denominator in the right-hand side of (2.19) is nonzero follows by Lemmas

3 and 5. This completes the proof of (1.3).

For the proof of (1.4), it is enough to observe that similar arguments to those used

to prove (1.3) show that for R e (0, 7?0] it suffices to prove

(2.20) \u(y)\2 =\uv(0)\2 ^ CR-"[      \uJx)\2dx.
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Now the expansion in Lemma 2, and Lemma 7, immediately give (2.20). Then the

argument for large 7\'s, i.e., R0 < R < 1 + 8X - \y\, proceeds as in the end of the

proof of (1.3).
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