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NONNEGATIVELY CURVED CONTACT MANIFOLDS

S. I. GOLDBERG1

ABSTRACT. A compact simply connected contact Riemannian manifold with

positive sectional curvature is homeomorphic with a sphere if its contact struc-

ture is normal and regular. In dimension 3 the regularity condition is omitted,

and a stronger theorem is proved.

1. Introduction. The sphere theorem says that a compact simply connected

¿-pinched Riemannian manifold with 6 > 1/4 is homeomorphic with a sphere, and

in the odd-dimensional case, if 6 = 1/4, the same conclusion prevails. Since all

complex and quaternionic projective spaces and the Cayley plane are 1/4-pinched,

this is the best result for even-dimensional manifolds. It is not known, however,

whether the theorem can be improved for odd-dimensional manifolds. On the

other hand, Siu and Yau [10] showed that a compact Kaehler manifold with S > 0

is analytically homeomorphic with complex projective space CPn. In this paper,

the proper odd-dimensional analogue of the Siu-Yau theorem is obtained. It is

an improvement of the sphere theorem for this class of manifolds and answers a

question posed by Sasaki [9]. In dimension 3 an even stronger theorem is obtained

by invoking a theorem of Hamilton [6]. The results obtained lend credibility to

the classical Poincaré conjecture. Finally, to our knowledge, the first examples

of nonregular contact structures on compact simply connected three-manifolds are

given.

2. Contact manifolds. An almost contact structure (<f>, Xo,ui) on a (2n + 1)-

dimensional C°° manifold M is given by a linear transformation field (f>, a vector

field Xo called the characteristic field, and a 1-form uj with

u(X0) = 1,    (j)X0 = 0   and   (p2 = -1 + uj(-)Xq,

where 7 is the identity transformation (see [2] for definitions and other properties).

If M has such a structure, it is called an almost contact manifold. In this case, a

Riemann metric g can be found such that

u = g(Xo,-),       gi<t>X,Y) =-giX,<t>Y)

for any vector fields X and Y. Such a metric is called an associated metric and is

clearly not unique. The resulting structure is then called an almost contact metric

or Riemannian structure.

A (2n + l)-dimensional C°° manifold is called a contact manifold if it carries a

global 1-form w with the property that w A (eL>)n / 0 everywhere.  The classical
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example is the bundle of unit tangent vectors to an oriented (n + l)-dimensional

manifold. An odd-dimensional sphere 52n+1 possesses a contact structure which

is not of this type. In fact, every compact simply connected homogeneous contact

manifold is a circle bundle over a homogeneous Hodge manifold [3]. Conversely, a

compact Hodge manifold B has a contact manifold canonically associated with it

as a circle bundle with B as base space.

A contact manifold M with contact form ui has an underlying almost contact

Riemannian structure ((¡),Xo,uj,g) such that g(X,4>Y) = duj(X,Y). If the charac-

teristic field Xq is a Killing vector field with respect to g, then

2(Vxw)(Y) = dw(X,Y),

g(R(X,X0)Y,X0) = g(X,Y)-u(X)uj(Y) = g(<t>X,<t>Y),

and
S(X,X0) = 2nu>(X),

where Vx denotes covariant differentiation with respect to g in the 'direction' X, R

is the Riemannian curvature tensor, and S is the Ricci tensor. Thus, the sectional

curvature of a plane section containing Xq is positive, and the Ricci curvature in

the direction Xq is 2n.
If the almost compact structure J on M X P defined by

J(X, fd/dt) = (<j>X - fX0,u{X)d/dt)

is integrable, the almost contact structure {(j), Xq,lo) is said to be normal, and M

is called a normal contact manifold. In this case, Xo is a Killing vector field with

respect to the associated metric g. A normal contact Riemannian manifold may be

characterized by

[X, Y] + <t>[<i>X, Y] + 4>{X, 4>Y] - [<pX, <j>Y] = {XuiY) - Yu{X)}X0.

A distribution V is associated with w as follows. Let

Vp = {X e TpM\duiX,Y) = 0 VF G TPM}.

Then dimVp = 1. Thus, V is an integrable distribution and determines a 1-

dimensional foliation of M. The contact structure is said to be regular if this

foliation is regular, that is, if for each point p G M there are Frobenius coordinates

around p such that different slices belong to different leaves.

3. Curvature and the Poincaré conjecture. In this section we obtain the

'odd-dimensional Siu-Yau theorem'. But first, we recall a more rigid result [5].

A compact simply connected normal regular contact manifold of positive sectional

curvature and constant scalar curvature is globally isometric to a sphere (with

metric not necessarily the constant curvature metric).

The regularity condition was subsequently removed by E. Moskal in his the-

sis (unpublished). This is the proper odd-dimensional analogue of the following

improvement of a theorem of M. Berger: A compact Kaehler manifold of positive

sectional curvature and constant scalar curvature is isometric to CPn with the con-

stant holomorphic curvature metric.

In the Siu-Yau theorem, the condition on the scalar curvature is dropped. If the

condition on the scalar curvature is omitted in Moskal's statement, the following

theorem is obtained.
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THEOREM 1. Let M be a compact simply connected contact Riemannian mani-

fold of dimension 2n + 1 with positive sectional curvature. If the contact structure

is normal and regular, then M is homeomorphic with S2n+X, n > 1.

A considerably stronger theorem for n — 1 will be obtained below.

PROOF. The base manifold B of the Boothby-Wang fibration of M carries a
Kaehler metric of positive curvature (see [5]). B is therefore homeomorphic with

complex projective space CPn. Moreover, the fibration has nonzero Euler class.

Thus, from the homotopy sequences of the fiberings Sx -» S2n+X -» CPn and

Sx -> M -> B, 7rt(M) = 7T¿(52n+1), i > 1. Since M is simply connected, it is

therefore of the same homotopy type as S2n+X. Hence, by Smale's solution of the

generalized Poincaré conjecture [11], we conclude that M is homeomorphic with
S2n+X for n > 1.

Martinet [7] showed that a compact and orientable 3-manifold M possesses a

contact structure. If it is normal, and S + Xg is positive definite for some A < 2,

where g is an associated metric, then g may be deformed to a metric with positive

Ricci curvature. To see this, consider the deformation defined by g = ag + bw ® u>,

where a and b are constants with a > 0 and a + b > 0. The inverse matrix ig"13) of

igij) is given by

F = \gl3 - 7^rrrr\x°x°-a a(a + b)

Let Tljk denote the coefficients of the Riemannian connection of g, namely, the

Christoffel symbols, and consider the tensor field Wjk = fjfc — T*fc. Then

Wjk = -b-i<p^k + #kUj) + 2föTö)XÔ(VjWfc + VkWj)-

Since Aio is a Killing vector field, the Lie derivative of g with respect to Xq vanishes,

so that

^* = ~(^-Wfc + ^,-).

Substituting this in

#y« = Kjki + ViWJk - VkWJi + WlrlWjk - W*kWJa,

where the P.1 -fc/ and R¡ kl are the components of the curvature tensors of the metrics

g and g, respectively,

Rl3ki = R'jki + h-iWj<t>ki + <t>lk<t>ji - ñ^k

+ LüiVkft.j + UjVktfi - WfcVi^- - ojjViftk)

b2
+ ^Uj{wk6î - ui6%k).

Thus, since M is normal,

iVxd>)Y = giX,Y)X0-uiY)X,

from which

§ = S - — g + -%{(2n + l)o + nb]w ® w.
a       a¿
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Putting n = 1 gives
x     _     2b       26 ,„       ,,
o = o-q -\—7;(áa + b)u) ®u;.

o        er

If X is vertical, that is, if X = tXo,

l + 4r(2a + i>)
a¿

since S{Xq, ■) = 2uj.  If X is horizontal, that is, if it belongs to the distribution

defined by u = 0, then

RiiXiX' = RijXÏXi - —gijXiX3.

By choosing b = a2 - a, we see that RijXlX3 > 0 if X is vertical. Moreover, setting

a = (2 - A)/2, where A < 2, then for any horizontal X,

RijXlX' = RijXiX3 + XgijXiX3.

We conclude that S is positive definite if S + Xg, A < 2, is positive definite.

The above proof is valid for n > 1 as well, that is, the metric g of any (2n + 1)-

dimensional normal contact Riemannian manifold can be deformed to a metric of

positive Ricci curvature if S + Xg, X < 2(1 - ^1 - 1/n), is positive definite. It is

shown in [12] that if S + 2g is positive definite on (M3,g), then it is a rational

homology sphere. The following is a much stronger statement.

THEOREM 2. A compact simply connected three-dimensional normal contact

Riemannian manifold (M, g) with S + Xg positive definite for some X < 2 is homeo-

morphic with S3.

PROOF. We have just shown that if S + Xg is positive definite for some A < 2,

then the metric g may be deformed to a metric g with positive Ricci curvature.

Therefore, by a theorem of Hamilton [6], g can be deformed to a metric of constant

positive sectional curvature, and so since M is simply connected, it is homeomorphic

with S3.

COROLLARY. A compact simply connected three-dimensional normal contact

Riemannian manifold with nonnegative sectional curvature is homeomorphic with

S3.

4. Remarks, (a) A compact three-dimensional regular contact manifold M is

normal since the base manifold of the Boothby-Wang fibration of M is a Riemann

surface. Moreover, if M is also simply connected, it is homeomorphic with S3.

This is a consequence of the classification of circle bundles on surfaces. More

general results in this direction are (i) a compact simply connected Seifert fibre

space (admitting an Sx -action, not necessarily free) is homeomorphic with S3.

This result is due to Raymond [8]. (ii) Every Cr foliation of a compact orientable

three-manifold TV by circles is Gr diffeomorphic to a Seifert fibration. This is due

to Epstein [4]. Hence, if TV is simply connected, it is homeomorphic with S3. It

generalizes Theorem 1 of [3] when n — 1.

(b) If the Poincaré conjecture is true, the proof of Theorem 1 can be extended

to the three-dimensional case.

RijXxX3 = V RijXl0Xl) + -^i2a + b) 2i2
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(c) To our knowledge, no examples of nonregular contact structures on compact

simply connected three-dimensional manifolds have appeared in the literature. The

examples given by Abe and Erbacher [1] of compact three-manifolds with a non-

regular contact structure are not simply connected. We owe the following to R.

Kulkarni.

Let

S3 = {(2, tu) G C2 I l^l2 + \w\2 = 1},        z = x + iy, w = u + iv.

For a G P, a ^ 0, consider the P-action <pa:R x S3 —► S3, where <j)a{6, iz,w)) =
(el6z,eia9w). Then

X = ^<t>a(0,(z,w))\e=o = iiz,aw) = {y,x,-av,au)

is a vector field tangential to the orbits. Note that since a / 0, the action has no

fixed points. Let

10 = (xdy - ydx) + (l/a)(ud« - vdu).

It is easily seen that

(a) w A c!w ̂  0 everywhere on S3;

(b) (X)|g3 is the null space of dw\s3;

(C) W(X)|S3 = 1.
If a = 1 or — 1, one gets the Hopf fibration. Let a = p/q, where p, q are relatively

prime. Then the P-action is not effective. It factors through the action of R/2iîqZ,

and so it induces a foliation of S3 by circles. However, if a / 1 or -1, this foliation

is not a principal fibration.

If q £ Q, the P-action is effective. The orbits of (1,0) and (0,1) are circles; the

rest are arcs. Thus, for a / 1 or -1 the contact structure is nonregular.

On any manifold, the set of nonregular contact structures forms an open dense

subset in the set of all contact structures. Openness is clear. As for denseness, one

need only vary a given regular contact form a little so that the flow of the associated

line field is not periodic. This may be achieved by a local construction.

(d) In the corollary it is not difficult to show that the sectional curvatures can

be taken to be greater than -3/2 everywhere.
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