ROWBOTTOM-TYPE PROPERTIES AND A CARDINAL ARITHMETIC

JAN TRYBA

ABSTRACT. Assuming Rowbottom-type properties, we estimate the size of certain families of closed disjoint functions. We show that whenever κ is Rowbottom and $2^\omega < \aleph_{\omega_1}(\kappa)$, then $2^{<\kappa} = 2^\omega$ or κ is the strong limit cardinal. Next we notice that every strongly inaccessible Jónsson cardinal κ is ν -Rowbottom for some $\nu < \kappa$. In turn, Shelah's method allows us to construct a Jónsson model of cardinality κ^+ provided $\kappa^{\mathrm{cf}(\kappa)} = \kappa^+$. We include some additional remarks.

0. Introduction. In this paper the basic set-theoretical notation is standard. We only mention that the letters $\kappa, \lambda, \mu, \ldots$ are reserved for cardinals. All undefined notions are taken from [3].

By $j: M \to V_{\gamma}$ we mean an elementary embedding of the transitive model M into the collection of all sets of rank less than the limit ordinal γ which moves some ordinal. We write $(\kappa, \lambda) \to (\mu, < \nu)$ iff whenever $f: [\kappa]^{<\omega} \to \lambda$, there exists a set $X \subseteq \kappa$ such that $|X| = \mu$ and $|f''[X]^{<\omega}| < \nu$. A cardinal $\kappa > \nu$ is ν -Rowbottom iff $(\kappa, \lambda) \to (\kappa, < \nu)$ for every $\lambda < \kappa$; κ is Rowbottom just in case it is ω_1 -Rowbottom. If $(\kappa, \nu) \to (\kappa, < \nu)$ for some $\nu < \kappa$, then κ is called Jónsson.

Background information about a relation between Jónsson cardinals and elementary embeddings can be found in [8]. Mimicking [8] we can in fact prove that the property $(\kappa, \lambda) \to (\mu, < \nu)$ is equivalent to the existence of an elementary embedding $j: M \to V_{\gamma}$ such that $j(\delta) = \lambda$ for some $\delta < \nu$, $j(\tau) = \kappa$ for some $\tau \ge \mu$ and $\mu, \nu \in j''M$ for every $\gamma > \kappa$ (or equivalently, for some $\gamma > \kappa$; we may additionally demand that the model V_{γ} carries countably many relations and operations).

1. Closed disjoint functions. We say that two functions f and g on λ are closed disjoint iff the set $\{\alpha < \lambda : f(\alpha) \neq g(\alpha)\}$ contains a closed unbounded subset of λ .

PROPOSITION 1.1. Assume $j: M \to V_{\gamma}$, $j(\delta) = \lambda$ for some $\delta < \lambda$, λ is regular and $\mu \in M \cap j''M$. Let $h: \lambda \to \mu$. Then every family of closed disjoint functions $f \in \prod_{\alpha < \lambda} h(\alpha)$ has less than $j(\mu)$ elements.

PROOF. Suppose the opposite: there exist a function $h: \lambda \to \mu$ and a family of size $j(\mu)$ of closed disjoint functions $f \in \prod_{\alpha < \lambda} h(\alpha)$. Let $j(\tau) = \mu$. By elementarity and absoluteness we find in M a function $\overline{h}: \delta \to \tau$ and a family $F \in M$ of size μ of closed disjoint-in-M functions $f \in \prod_{\alpha < \delta} \overline{h}(\alpha)$. Put $\eta = \sup j'' \delta < \lambda$.

closed disjoint-in-M functions $f \in \prod_{\alpha < \delta} \overline{h}(\alpha)$. Put $\eta = \sup j''\delta < \lambda$. We shall prove that $(j(f))(\eta) \neq (j(g))(\eta)$ for any distinct $f, g \in F$. Let $C \subseteq \{\alpha < \delta : f(\alpha) \neq g(\alpha)\}$ be closed unbounded in δ and $C \in M$. Therefore j''C is

Received by the editors October 26, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 03E10, 03E55; Secondary 03C50, 03E05. Key words and phrases. Closed disjoint functions, I-functions, norm of a function, Chang's Conjecture, \(\nu\)-Rowbottom cardinals, Jónsson cardinals, possible scale for a sequence of ordinals.

JAN TRYBA

unbounded in $\sup j''\delta = \eta$, $j(C) \subseteq \{\alpha < \lambda : (j(f))(\alpha) \neq (j(g))(\alpha)\}$ and j(C) is closed in λ . Since $j''C \in j(C)$, we have $\eta \in j(C)$.

Now we derive a contradiction, because

$$|F| = |\{(j(f))(\eta): f \in F\}| \le (j(\overline{h}))(\eta) < \mu.$$

In the presence of Proposition 1.1 we receive some generalizations of the known results about Chang's Conjecture or those formulated in [7], for instance.

COROLLARY 1.2. If λ is a regular cardinal and $(\kappa, \lambda) \to (\mu, < \lambda)$, then every family of closed disjoint functions $f: \lambda \to \eta$, where $\eta < \mu$, has less than κ members. If in addition $\operatorname{cf}(\mu) > \lambda$, then every family of closed disjoint functions $f: \lambda \to \mu$ has at most κ elements.

In particular, if κ is Rowbottom, then the above statement is true for each regular $\omega < \lambda < \kappa = \mu$. \square

Let I be an ideal over λ . A partial function f on λ is called an I-function iff $dom(f) \notin I$ (compare [3, p. 432]). Two I-functions f and g on λ are almost disjoint iff the set $\{\alpha < \lambda : f(\alpha) = g(\alpha)\}$ has size less than λ .

The method of the proof of Proposition 1.1 yields

PROPOSITION 1.3. Assume $j: M \to V_{\gamma}$, $j(\delta) = \lambda$ for some $\delta < \lambda$, λ is regular, $\lambda \leq \mu \in j''M$ and $\mu^+ \in M$. Let I be any ideal over λ containing all bounded subsets of λ . Then every family of almost disjoint I-functions on λ into μ has less than $j(\mu^+)$ elements.

PROOF. Argue by contradiction. Let $j(\tau) = \mu$. By our assumption there exist an M-ideal $\overline{I} \in M$ over δ containing all bounded subsets of δ and a family $F \in M$ of size μ^+ of almost disjoint \overline{I} -functions on δ into τ . Set $\eta = \sup j''\delta < \lambda$.

For any distinct $f,g \in F$ we can choose $\beta < \delta$ such that $f(\alpha) \neq g(\alpha)$ for all $\alpha \in \text{dom}(f) \cap \text{dom}(g)$, $\alpha \geq \beta$. Thus $(j(f))(\alpha) \neq (j(g))(\alpha)$ for all $\alpha \in \text{dom}(j(f)) \cap \text{dom}(j(g))$, $\alpha \geq \eta > j(\beta)$.

Since all bounded subsets of λ are elements of j(I), there is a subfamily $G \subseteq F$ of size μ^+ and an ordinal $\eta \leq \alpha < \lambda$ such that $\alpha \in \text{dom}(j(f))$ for all $f \in G$. However, $|G| = |\{(j(f))(\alpha): f \in G\}| \leq \mu$, which is false. \square

COROLLARY 1.4. If $j: M \to V_{\gamma}$, $j(\delta) = \lambda$ for some $\delta < \lambda$, λ is regular and $\lambda^+ \in M$, then the ideal $\overline{I} = \{x \subseteq \lambda: |x| < \lambda\}$ of bounded subsets of λ is $j(\lambda^+)$ -saturated. Hence, the ideal \overline{I} is λ^{++} -saturated, assuming $(\lambda^{++}, \lambda) \to (\lambda^+, < \lambda)$.

PROOF. If $|x| = \lambda$, then the identity restricted to x is an \overline{I} -function. Now apply Proposition 1.3. \square

If f and g are ordinal-valued functions on a regular cardinal $\lambda > \omega$, then the symbol g < f means that the set $\{\alpha < \lambda : g(\alpha) < f(\alpha)\}$ contains some closed unbounded subset of λ (compare [3, p. 67]). The relation g < f is well-founded and the rank $||f|| = \sup\{||g|| + 1 : g < f\}$ of f in this one is called the norm of f. $||\tau||$ denotes the norm of the constant function on λ taking τ as the only value.

The following result can be deduced indirectly from Shelah's work [5] using Magidor's filters.

PROPOSITION 1.5. If $j: M \to V_{\gamma}$, $j(\delta) = \lambda$ for some $\delta < \lambda$ and λ is regular, then $\|\tau\| \leq j(\tau)$ for each $\tau \in M \cap j''M$.

PROOF. Let $\eta = \sup j''\delta < \lambda$. First of all we want to show that $\|f\|^M \le (j(f))(\eta)$ for every ordinal-valued function $f \in M$ defined on δ . This is done by simple induction on the norm $\|f\|^M$. If $\|f\|^M = \beta + 1$, then there is some function $g \in M$ on δ such that g < f and $\|g\|^M = \beta \le (j(g))(\eta)$. But the proof of Proposition 1.1 shows that g < f implies $(j(g))(\eta) < (j(f))(\eta)$ and so $\|f\|^M = \beta + 1 \le (j(f))(\eta)$. The case of limit $\|f\|^M$ is similar.

Presently, if $\|\tau\| > j(\tau)$ and $j(\alpha) = \tau$, then there exists a function $g: \lambda \to \tau$ such that $\|g\| = j(\tau)$ and so in M there is a function $f: \delta \to \alpha$ such that $\|f\|^M = \tau$. But then $\tau \leq (j(f))(\eta) < j(\alpha) = \tau$, a contradiction. \square

COROLLARY 1.6. If λ is a regular cardinal and $(\kappa, \lambda) \to (\mu, <\lambda)$, then $\|\mu\| \le \kappa$. In particular, Chang's Conjecture $(\lambda^+, \lambda) \to (\lambda, <\lambda)$ implies $\|\lambda\| = \lambda^+$. \square

2. Cardinal exponentiation. Using some elementary embeddings we can obtain a few inequalities in cardinal arithmetic.

LEMMA 2.1. If $j: M \to V_{\gamma}$, $j(\delta) = \lambda$, $\rho \in j''M$, $\mu = (\rho^{\delta})^+$ and $\mu \in M$, then $\rho^{\lambda} < j(\mu)$.

PROOF. Let $j(\eta) = \rho$ and assume to the contrary that $\rho^{\lambda} \geq j(\mu)$. Hence there exists some function from ${}^{\lambda}\rho$ onto $j(\mu)$. So in M there is a function which transforms $({}^{\delta}\eta)^M$ onto μ . As $\eta \leq \rho$, the contradiction $\mu \leq |({}^{\delta}\eta)^M| \leq \rho^{\delta} < \mu$ establishes the Lemma. \square

COROLLARY 2.2. If $(\kappa, \lambda) \to (\mu, < \nu)$ and $\rho^{\alpha} < \mu$ for all $\alpha < \nu$, then $\rho^{\lambda} < \kappa$. Therefore, if κ is ν -Rowbottom and $2^{\alpha} < \kappa$ for all $\alpha < \nu$, then κ is the strong limit cardinal. \square

REMARK 2.3. If $2^{\omega} < \aleph_{\omega}$ and \aleph_{ω} is Rowbottom, then \aleph_{ω} is the strong limit cardinal. By Theorem 84 from [3] and Corollary 1.4 we can even evaluate that $2^{\aleph_{n+1}} = 2^{\aleph_n}$ or $2^{\aleph_{n+1}} < j(\aleph_{n+2})$ for all $n < \omega$, whenever $j \colon M \to V_{\gamma}$ is an arbitrary elementary embedding such that $j(\aleph_{\omega}) = \aleph_{\omega}$ and some countable ordinal is moved by j. \square

REMARK 2.4. If a cardinal κ is not strong limit, then the property $(\kappa, \lambda) \to (\kappa, < \lambda)$ fails for the least $\lambda < \kappa$ such that $2^{\lambda} \ge \kappa$. \square

The same arguments can be used for proving

LEMMA 2.5. If $j: M \to V_{\gamma}$, $j(\delta) = \lambda$, $\rho \in j''M$, $\mu = (\delta^{\rho})^+$ and $\mu \in M$, then $\lambda^{\rho} < j(\mu)$. \square

COROLLARY 2.6. If $(\kappa, \lambda) \to (\mu, < \nu)$ and $\alpha^{\rho} < \mu$ for all $\alpha < \nu$, then $\lambda^{\rho} < \kappa$. Therefore, if κ is ν -Rowbottom and $\alpha^{\omega} < \kappa$ for all $\alpha < \nu$, then $\lambda^{\omega} < \kappa$ for all $\lambda < \kappa$. \square

LEMMA 2.7. If $(\kappa, \lambda) \to (\mu, <\lambda)$, $cf(\nu) = \lambda$ and $\alpha^{\lambda} < \mu$ for all $\alpha < \nu \leq \mu$, then $\nu^{\lambda} < \kappa$. Hence $2^{\nu} < \kappa$, if $\nu \leq \mu$ is a strong limit singular cardinal with $cf(\nu) = \lambda$.

PROOF. Choose an elementary embedding $j: M \to V_{\kappa+\omega}$ such that $j(\delta) = \lambda$ for some $\delta < \lambda$, $j(\tau) = \kappa$ for some $\tau \ge \mu$ and $\mu, \nu \in j''M$. But $j(\nu) = \nu$ implies

$$\lambda = \operatorname{cf}(j(\nu)) = j(\operatorname{cf}^{M}(\nu)) \ge j(\lambda) > j(\delta) = \lambda.$$

JAN TRYBA

Thus ν is moved by j and so j witnesses $(\kappa, \nu) \to (\mu, < \nu)$. Now Corollary 2.6 completes the proof. \square

Galvin-Hajnal's method [2] and Corollary 1.6 allow us to formulate some bounds on $\nu^{\mathrm{cf}(\nu)}$ in certain cases of singular cardinals $\nu > \mu$.

THEOREM 2.8. Assume $(\kappa, \lambda) \to (\mu, < \lambda)$. Let $\lambda \le \eta \le \mu$ and $\nu = \aleph_{\eta}$. If $cf(\eta) = \lambda$ and $\alpha^{\lambda} < \nu$ for all $\alpha < \nu$, then $\nu^{\lambda} < \aleph_{\kappa}$. In particular, if ν is the strong limit singular cardinal of cofinality λ , then $2^{\nu} < \aleph_{\kappa}$. \square

COROLLARY 2.9 (MAGIDOR [4]). Presuming Chang's Conjecture $(\lambda^+, \lambda) \rightarrow (\lambda, < \lambda)$, if \aleph_{λ} is the strong limit cardinal, then $2^{\aleph_{\lambda}} < \aleph_{\lambda^+}$. \square

COROLLARY 2.10. If \aleph_{ω} is Rowbottom and \aleph_{ω_n} is the strong limit cardinal for some $n < \omega$, then $2^{\aleph_{\omega_n}} < \aleph_{\omega_n}$. \square

The main theorem is based on the following technical

CLAIM 2.11. Let λ be the least cardinal such that $\rho^{\lambda} > \rho^{\nu}$. If $(\kappa, \lambda) \to (\mu, < \lambda)$, $\lambda < \mu$, cf $(\mu) \neq \lambda$ and $\rho^{\nu} < \aleph_{\lambda}(\mu)$, then $\rho^{\lambda} \leq \kappa$. Moreover, $\rho^{\lambda} < \kappa$ unless κ is singular.

PROOF. Simple arithmetic shows that λ is regular. Clearly, $\nu < \lambda \leq \rho^{\nu}$. Assigning for each $f \in {}^{\lambda}\rho$ the sequence $\overline{f} = \langle f \upharpoonright \alpha : \alpha < \lambda \rangle$ we get the branching family F of ρ^{λ} functions from λ into some set of cardinality ρ^{ν} (whenever $\overline{f}, \overline{g} \in F$ and $\overline{f}(\beta) = \overline{g}(\beta)$, then $\overline{f}(\alpha) = \overline{g}(\alpha)$ for all $\alpha \leq \beta$ —compare [3, p. 431]).

Let $\rho^{\nu} < \sigma \leq \rho^{\lambda}$ be any regular cardinal. As $\operatorname{cf}(\eta) \neq \lambda$ for all cardinals $\mu \leq \eta < \aleph_{\lambda}(\mu)$, the proof of Lemma 35.2 in [3] shows how then to construct a branching family G of σ functions $f \colon \lambda \to \eta$ for some $\eta < \mu, \, \eta \leq \lambda$ or $\operatorname{cf}(\eta) = \lambda$. But Corollary 1.2 gives $|G| < \kappa$, so we are done. \square

LEMMA 2.12. If $\nu < \mu$, $\operatorname{cf}(\mu) \leq \nu$ or μ is regular, $(\kappa, \lambda) \to (\mu, < \lambda)$ holds for every regular $\nu < \lambda < \mu$ and $\kappa^- \leq \rho^{\nu} < \aleph_{\nu^+}(\mu)$, then $\rho^{<\mu} = \rho^{\nu}$. \square

COROLLARY 2.13. Assume $(\lambda^{++}, \lambda) \to (\lambda^{+}, < \lambda)$. Then $2^{<\lambda} = \lambda$ implies $2^{\lambda} = \lambda^{+}$ and $\lambda^{+} \leq 2^{<\lambda} < \aleph_{\lambda}$ implies $2^{\lambda} = 2^{<\lambda}$. \square

THEOREM 2.14. Let $\nu = \sup\{\lambda < \kappa: \lambda \text{ is regular and } (\kappa, \lambda) \to (\kappa, < \lambda) \text{ fails}\}$. If $\nu < \kappa$ and $\kappa^- \le 2^{\nu} < \aleph_{\nu^+}(\kappa)$, then $2^{<\kappa} = 2^{\nu}$. In particular, if κ is ν^+ -Rowbottom and $\kappa \le 2^{\nu} < \aleph_{\nu^+}(\kappa)$, then $2^{<\kappa} = 2^{\nu}$.

PROOF. If $\nu < \kappa$ then $(\kappa, \lambda) \to (\kappa, < \lambda)$ for every regular $\nu < \lambda < \kappa$. It is easy to see that then κ is regular or $\mathrm{cf}(\kappa) \le \nu$ (compare Lemma 2 in [8]). Applying Lemma 2.12 we finish the proof. \square

COROLLARY 2.15. If \aleph_{ω} is Rowbottom and $\aleph_{\omega} < 2^{\aleph_n} < \aleph_{\omega_{n+1}}$ for some $n < \omega$, then $2^{\aleph_{\omega}} = 2^{\aleph_n}$. \square

REMARK 2.16. If κ is ν -Rowbottom and $\kappa \leq 2^{<\nu} < \aleph_{\mathrm{cf}(\nu)}(\kappa)$, then $2^{<\kappa} = 2^{<\nu}$. \square

QUESTION 2.17. Under the notation of Theorem 2.14, is $\nu < \kappa$ whenever κ is Jónsson?

- **3. The first critical point.** The least ordinal moved by an elementary embedding $j: M \to V_{\gamma}$ is regular in M. Thus the correspondence between Rowbottom-type properties and elementary embeddings shows that the first cardinal $\nu \leq \mu$ such that $(\kappa, \nu) \to (\mu, < \nu)$ is regular. We shall prove that such ν cannot be strongly inaccessible, whenever $\mu = \kappa$.
- LEMMA 3.1. Assume that $(\kappa, \nu) \to (\kappa, < \nu)$ and $\nu < \kappa$ is a limit cardinal. Let $\lambda \le \kappa$ be the least cardinal such that $\lambda > \nu$ and the property $(\kappa, \lambda) \to (\kappa, < \lambda)$ fails. If $\nu^{\text{cf}(\nu)} < \lambda$, then there exists $\rho < \nu$ such that $(\kappa, \nu) \to (\kappa, < \rho)$.

PROOF. Set $A = \{ \sigma < \nu : (\kappa, \sigma) \to (\kappa, < \sigma) \text{ fails} \}$ and $\eta = \sup A$. If $\eta < \nu$, then our statement is true for $\rho = \eta^+$. If this were false, there would be some strictly increasing sequence $\langle \sigma_\alpha : \alpha < \operatorname{cf}(\nu) \rangle$ of elements of A, cofinal in ν . For each $\alpha < \operatorname{cf}(\nu)$ we can find a partition $f_\alpha : [\kappa]^{<\omega} \to \sigma_\alpha$ such that $|f_\alpha''[X]^{<\omega}| = \sigma_\alpha$ for every $X \subseteq \kappa$ of size κ (a counterexample for $(\kappa, \sigma_\alpha) \to (\kappa, < \sigma_\alpha)$).

Put $B = \prod_{\alpha < \mathrm{cf}(\nu)} \sigma_{\alpha}$ and define $g: [\kappa]^{<\omega} \to B$ setting $g(s) = \langle f_{\alpha}(s) : \alpha < \mathrm{cf}(\nu) \rangle$ for each finite subset $s \subseteq \kappa$. As $|B| = \nu^{\mathrm{cf}(\nu)} < \lambda$, the definition of λ supplies a set $X \subseteq \kappa$ such that $|X| = \kappa$ and $|g''[X]^{<\omega}| < \nu$. On the other hand, $|g''[X]^{<\omega}| \ge \sup_{\alpha < \mathrm{cf}(\nu)} |f''_{\alpha}[X]^{<\omega}| \ge \nu$ by definition of g. This contradiction establishes the Lemma. \square

COROLLARY 3.2. If $\nu < \kappa$ is a strong limit cardinal and $(\kappa, \nu) \to (\kappa, < \nu)$, then $(\kappa, \nu) \to (\kappa, < \rho)$ for some $\rho < \nu$. Thus the least cardinal $\lambda < \kappa$ such that $(\kappa, \lambda) \to (\kappa, < \lambda)$ cannot be strongly inaccessible.

PROOF. Let $\lambda \leq \kappa$ be the least cardinal such that $\lambda > \nu$ and $(\kappa, \lambda) \to (\kappa, < \lambda)$ fails. Observe that λ is ν -Rowbottom. Since $2^{<\nu} = \nu$, the cardinal λ is strong limit by Corollary 2.2. Now $\nu^{cf(\nu)} = 2^{\nu} < \lambda$ and our claim follows from Lemma 3.1. \square

QUESTION 3.3. Is the least $\lambda < \kappa$ such that $(\kappa, \lambda) \to (\kappa, < \lambda)$ is always a successor cardinal?

THEOREM 3.4. Every strongly inaccessible Jónsson cardinal κ is ρ -Rowbottom for some $\rho < \kappa$.

PROOF. Let $\lambda < \kappa$ be any regular cardinal such that $(\kappa, \lambda) \to (\kappa, < \lambda)$. The set $S = \{\nu < \kappa : \operatorname{cf}(\nu) = \lambda \text{ and } \nu \text{ is strong limit}\}$ is stationary in κ . Lemma 2 from [8] shows that $(\kappa, \nu) \to (\kappa, < \nu)$ for every $\nu \in S$. By Corollary 3.2, for each $\nu \in S$ we can choose some $\rho_{\nu} < \nu$ so that $(\kappa, \nu) \to (\kappa, < \rho_{\nu})$. By Fodor's Theorem there exist some fixed $\rho < \kappa$ and a stationary subset $T \subseteq S$ such that $(\kappa, \nu) \to (\kappa, < \rho)$ for each $\nu \in T$. This means that κ is ρ -Rowbottom, since T is unbounded in κ . \square

QUESTION 3.5. May we erase the word "strongly" from the above Theorem?

4. Jónsson models and successor cardinals. We showed in [8] that a successor cardinal κ^+ is not Jónsson, whenever κ is regular. Alternatively, κ^+ is not Jónsson under $2^{\kappa} = \kappa^+$ [1]. Shelah's method from [6] enables us to weaken this presumption.

We say that a regular cardinal μ is a possible scale for the sequence $\langle \kappa_i : i < \lambda \rangle$ of cardinals iff there exists a sequence $\langle f_{\alpha} : \alpha < \mu \rangle$ of functions on λ such that

- (i) $f_{\alpha} \in \prod_{i < \lambda} \kappa_i$ for all $\alpha < \mu$,
- (ii) $|\{i < \lambda : f_{\alpha}(i) \ge f_{\beta}(i)\}| < \lambda$ for all $\alpha < \beta < \mu$. (We shall write $f_{\alpha} < f_{\beta}$.)
- (iii) For every $f \in \prod_{i < \lambda} \kappa_i$ there exists $\alpha < \mu$ such that $|\{i < \lambda : f(i) \le f_{\alpha}(i)\}| = \lambda$ (compare [6]).

JAN TRYBA

LEMMA 4.1 (SHELAH [6]). Let $j: M \to V_{\gamma}$ and N = j''M. If μ is a possible sclae for the sequence $\langle \kappa_i : i < \lambda \rangle \in N$ of regular cardinals, $\lambda + 1 \subseteq N$ and $j(\mu) = \mu$, then $|\{i < \lambda : j(\kappa_i) = \kappa_i\}| = \lambda$.

PROOF. Set $A = \{i < \lambda : |N \cap \kappa_i| < \kappa_i\}$ and assume to the contrary that $|\lambda \backslash A| < \lambda$. As N is the elementary substructure of V_γ , some sequence $\langle f_\alpha : \alpha < \mu \rangle \in N$ exemplifies that μ is a possible scale for $\langle \kappa_i : i < \lambda \rangle$. For each $i \in A$ the subset $B_i = \{f_\alpha(i) : \alpha \in N \cap \mu\}$ of $N \cap \kappa_i$ has cardinality less than κ_i , so we may choose $\sup B_i < f(i) < \kappa_i$ by regularity of κ_i . Accepting f(i) = 0 for $i \in \lambda \backslash A$, we have $f_\alpha < f$ for every $\alpha \in N \cap \mu$. As the relation < is transitive and the set $N \cap \mu$ is cofinal in μ , $f_\alpha < f$ for every $\alpha < \mu$, which is impossible. \square

THEOREM 4.2. If $\kappa^{\text{cf}(\kappa)} = \kappa^+$, then κ^+ is not Jónsson.

PROOF. By our first remark in this item we may assume that $\lambda = \mathrm{cf}(\kappa) < \kappa$. Suppose that κ^+ is Jónsson and pick an elementary embedding $j: M \to V_{\kappa^+ + \omega}$ such that $j(\alpha) = \alpha$ for all $\alpha \leq \lambda$, $j(\nu) > \nu$ for some $\nu < \kappa$ and $j(\kappa^+) = \kappa^+$ (see the proof of Theorem 1 in [8]). Then there exists some strictly increasing sequence $\langle \kappa_i : i < \lambda \rangle \in j''M$ of cardinals, cofinal in κ , with $\kappa_0 \geq \nu$.

Cantor's diagonalization method shows that every family of κ functions $f \in \prod_{i < \lambda} \kappa_i^{++}$ has an upper bound in the relation <. Since $|\prod_{i < \lambda} \kappa_i^{++}| = \kappa^{\lambda} = \kappa^+$, κ^+ is the only possible scale for $\langle \kappa_i^{++} : i < \lambda \rangle$. Now, by Lemma 4.1, the set $A = \{i < \lambda : j(\kappa_i^{++}) = \kappa_i^{++}\}$ is unbounded in λ . But each κ_i^{++} , where $i \in A$, is Jónsson, contradicting [8]. \square

COROLLARY 4.3 (SHELAH [6]). If $2^{\aleph_{\alpha}} = \aleph_{\alpha+\gamma+1}$ and $cf(\gamma) < \aleph_{\alpha+1}$, then $2^{\aleph_{\alpha}}$ cannot be Jónsson. \square

With a slight modification, a similar argument can be used for

LEMMA 4.4. If κ^+ is Jónsson, $\lambda = \mathrm{cf}(\kappa) > \omega$ and $\rho^{\lambda} < \kappa$ for $\rho < \kappa$, then the set $\{\rho < \kappa: \rho^+ \text{ is Jónsson}\}$ contains some closed unbounded subset of κ .

PROOF. Let $j: M \to V_{\kappa^+ + \omega}$, $j(\alpha) = \alpha$ for all $\alpha \leq \lambda$, $j(\nu) > \nu$ for some $\lambda < \nu < \kappa$ and $j(\kappa^+) = \kappa^+$. Choose a strictly increasing continuous sequence $\langle \rho_i : i < \lambda \rangle \in j''M$ of cardinals, cofinal in κ , with $\rho_0 \geq \nu$. Suppose by way of contradiction that the set $S = \{i < \lambda : \rho_i^+ \text{ is not Jónsson}\}$ is stationary in λ .

Set $\kappa_i = \rho_i^+$ for $i \in S$ and $\kappa_i = \rho_i^{++}$ for $i \in \lambda \backslash S$. Thus no κ_i is Jónsson. Since S is stationary, by an analogue of Lemma 8.5 stated in [3], every family of almost disjoint functions $f \in \prod_{i < \lambda} \kappa_i$ has at most κ^+ elements. But every family of κ functions $f \in \prod_{i < \lambda} \kappa_i$ has an upper bound in the relation <. Thus κ^+ is the only possible scale for $\langle \kappa_i : i < \lambda \rangle$. Now each element of the set $\{\kappa_i : i < \lambda \text{ and } j(\kappa_i) = \kappa_i\} \neq \emptyset$ is Jónsson, contrary to our choice. \square

REMARK 4.5. We recall another result of Shelah from [6] which can be formulated as follows: If $\rho^{\mathrm{cf}(\kappa)} < \kappa$ for all $\rho < \kappa$ and κ^+ is Jónsson, then the set $\{\lambda < \kappa : \lambda \text{ is a regular Jónsson cardinal}\}$ is unbounded in κ . Hence, if λ is arbitrary and $\lambda^{\omega} = \aleph_{\alpha}$, then $\aleph_{\alpha+\omega+1}$ cannot be Jónsson. \square

We can also leave out one assumption in Shelah's result [6].

LEMMA 4.6. If $(\lambda^+)^{\omega} = \lambda^+$ for all singular cardinals λ , then no successor cardinal is Jónsson.

PROOF. Suppose to the contrary that κ^+ is the least successor cardinal which is Jónsson. There are now two cases:

Case I: $\mathrm{cf}(\kappa) = \omega$. Then $\kappa^{\mathrm{cf}(\kappa)} \leq (\kappa^+)^\omega = \kappa^+$ and a contradiction follows from Theorem 4.2.

Case II: $\kappa > \operatorname{cf}(\kappa) > \omega$. First, collapse $\operatorname{cf}(\kappa)$ onto ω_1 using the notion of forcing $P = \{p: p \text{ is a function with } \operatorname{dom}(p) \in \omega_1 \text{ and } \operatorname{ran}(p) \subseteq \operatorname{cf}(\kappa)\}$ ordered by inclusion.

Let G be any generic filter on P. Since $|P| = \operatorname{cf}(\kappa)^{\omega} < \kappa$, it follows from [8] that κ^+ remains Jónsson in the forcing extension V[G] of a ground model V. Clearly, since P is ω_1 -closed, ω_1 is preserved and $\operatorname{cf}(\kappa) = \omega_1$ in V[G]. Moreover, |P| is collapsed onto ω_1 and every cardinal $\lambda > |P|$ in V remains a cardinal in V[G]. The equality $(\lambda^+)^{\omega} = \lambda^+$ is also true in V[G] for every singular cardinal λ .

From now on work in V[G]. Let $j\colon M\to V_\gamma$ witness that κ^+ is Jónsson. Pick some strictly increasing continuous sequence $\langle \kappa_i \colon i<\omega_1\rangle \in j''M$ of cardinals with cofinality ω , cofinal in κ . Since $|\prod_{i<1}\kappa_i^+| \le (\kappa_1^+)^\omega = \kappa_1^+$ for all $1<\omega_1$, by Claim 13 from [6] the successor κ^+ is a possible scale for $\langle \kappa_i^+ \colon i<\omega_1\rangle$. It follows from Lemma 4.1 that the set $A=\{i<\omega_1\colon j(\kappa_i^+)=\kappa_i^+\}$ is unbounded in ω_1 . But if $i\in A$ and κ_i^+ is greater than the first ordinal moved by j, then κ_i^+ is Jónsson, which is a contradiction because $\mathrm{cf}(\kappa_i)=\omega$ and $(\kappa_i)^\omega=\kappa_i^+$. \square

The same proof shows

LEMMA 4.7. Assume the Singular Cardinals Hypothesis. Then $2^{\omega} < \kappa$ implies that κ^+ is not Jónsson. \square

LEMMA 4.8. No successor cardinal above a compact cardinal is Jónsson.

PROOF. Solovay showed that the singular cardinals hypothesis holds above the least compact cardinal (see [3, p. 405]). Now proceed as in the proof of Lemma 4.6. □

REFERENCES

- P. Erdös and A. Hajnal, On a problem of B. Jónsson, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 14 (1966), 19-23.
- F. Galvin and A. Hajnal, Inequalities for cardinal powers, Ann. of Math. (2) 101 (1975), 491-498.
- 3. T. Jech, Set theory, Academic Press, New York, 1978.
- 4. M. Magidor, Chang's conjecture and powers of singular cardinals, J. Symbolic Logic 42 (1977), 272-276.
- 5. S. Shelah, A note on cardinal exponentiation, J. Symbolic Logic 45 (1980), 56-66.
- 6. ____, Jónsson algebras in successor cardinals, Israel J. Math. 30 (1978), 57-64.
- 7. J. Tryba, A few remarks on Rowbottom cardinals, Israel J. Math. 40 (1981), 193-196.
- On Jónsson cardinals with uncountable cofinality, Israel J. Math. 49 (1984), 315–324.

DEPARTMENT OF MATHEMATICS, GDAŃSK UNIVERSITY, WITA STWOSZA 57, 80-952 GDASŃK, POLAND