PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 96, Number 4, April 1986

ROWBOTTOM-TYPE PROPERTIES
AND A CARDINAL ARITHMETIC

JAN TRYBA

ABSTRACT. Assuming Rowbottom-type properties, we estimate the size of
certain families of closed disjoint functions. We show that whenever « is Row-
bottom and 2¥ < R, (k), then 2<¥ = 2% or & is the strong limit cardinal. Next
we notice that every strongly inaccessible Jénsson cardinal k is v-Rowbottom
for some v < k. In turn, Shelah’s method allows us to construct a J6nsson
model of cardinality k* provided x°f(¥) = k*+. We include some additional
remarks.

0. Introduction. In this paper the basic set-theoretical notation is standard.
We only mention that the letters «, A, u, . . . are reserved for cardinals. All undefined
notions are taken from [3].

By 7:M — V, we mean an elementary embedding of the transitive model M
into the collection of all sets of rank less than the limit ordinal v which moves some
ordinal. We write (k,)) — (u, < v) iff whenever f:[k]<¥ — A, there exists a set
X C k such that | X| = u and |f”[X]<%| < v. A cardinal k¥ > v is v-Rowbottom iff
(k,A) = (k, < v) for every A < k; k is Rowbottom just in case it is wi-Rowbottom.
If (k,v) — (k, < v) for some v < k, then & is called Jénsson.

Background information about a relation between Jénsson cardinals and elemen-
tary embeddings can be found in [8]. Mimicking [8] we can in fact prove that the
property (k,\) — (u, < v) is equivalent to the existence of an elementary embed-
ding 7: M — V,, such that j(§) = A for some § < v, j(r) = & for some 7 > p and
u,v € 7" M for every v > k (or equivalently, for some v > k; we may additionally
demand that the model V,, carries countably many relations and operations).

1. Closed disjoint functions. We say that two functions f and g on ) are
closed disjoint iff the set {a < A: f(a) # g(a)} contains a closed unbounded subset
of A

PROPOSITION 1.1. Assume j:M — V., 5(6) = X for some 6 < A, X is regular
and p € M N3"M. Let h: X — u. Then every family of closed disjoint functions
[ € llacy hla) has less than j(u) elements.

PROOF. Suppose the opposite: there exist a function A: A — u and a family of
size j(u) of closed disjoint functions f € [, ., h(a). Let j(r) = p. By elementarity
and absoluteness we find in M a function h:§ — 7 and a family F € M of size u of
closed disjoint-in-M functions f € [], 4 h(). Put n =supj”6 < A.

We shall prove that (5(f))(n) # (7(g))(n) for any distinct f,g € F. Let C C
{a < é: f(a) # g(a)} be closed unbounded in é and C € M. Therefore j”C is
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unbounded in supj”6 = 0, j(C) C {a < A (j(f))(e) # (5(9))(e)} and 5(C) is
closed in . Since 5”C € j(C), we have n € j(C).
Now we derive a contradiction, because

[FI={G(Nm): f € FH < G(R)n) <u. O

In the presence of Proposition 1.1 we receive some generalizations of the known
results about Chang’s Conjecture or those formulated in (7], for instance.

COROLLARY 1.2. If X s a regular cardinal and (k,)\) — (4, < A), then every
family of closed disjoint functions f: A — n, where n < p, has less than k members.
If in addition cf(u) > ), then every family of closed disjoint functions f: X — u has
at most k elements.

In particular, if k is Rowbottom, then the above statement is true for each
regular w < A<k=p. O

Let I be an ideal over A. A partial function f on ) is called an I-function iff
dom(f) ¢ I (compare [3, p. 432]). Two I-functions f and g on X are almost disjoint
iff the set {a < A: f(a) = g(a)} has size less than \.

The method of the proof of Proposition 1.1 yields

PROPOSITION 1.3. Assume 3: M — V., 7(6) = A for some § < A, X is regular,
A< u€j'M and ut € M. Let I be any ideal over A containing all bounded
subsets of A. Then every family of almost disjoint I-functions on X into p has less
than j(ut) elements.

PROOF. Argue by contradiction. Let j(r) = u. By our assumption there exist
an M-ideal T € M over § containing all bounded subsets of § and a family F € M
of size u* of almost disjoint I-functions on § into 7. Set # = sup "6 < A.

For any distinct f,g € F we can choose 3 < é such that f(a) # g(a) for all
a € dom(f) N dom(g), a > B. Thus (5(f))(a) # (5(g))(a) for all & € dom(5(f)) N
dom(5(9)), @ > 1 > (6)

Since all bounded subsets of A are elements of j(T), there is a subfamily G C F of
size 4T and an ordinal 7 < a < A such that o € dom(j(f)) for all f € G. However,
|G| = {(7(f))(@): f € G}| < p, which is false. O

COROLLARY 1.4. If 5:M — V,, 7(6) = X for some § < A, X is regular and
At € M, then the ideal I = {z C X:|z| < A} of bounded subsets of \ 15 j(AT)-
saturated. Hence, the ideal T is \* T -saturated, assuming (AT ) — (AT, < ).

PROOF. If |z| = ), then the identity restricted to z is an I-function. Now apply
Proposition 1.3. O

If f and g are ordinal-valued functions on a regular cardinal A > w, then the
symbol ¢ < f means that the set {& < A:g(a) < f(@)} contains some closed
unbounded subset of A (compare 3, p. 67]). The relation g < f is well-founded
and the rank ||f|| = sup{||g|| + 1:9 < f} of f in this one is called the norm of f.
|7|| denotes the norm of the constant function on A taking 7 as the only value.

The following result can be deduced indirectly from Shelah’s work (5] using
Magidor’s filters.
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PROPOSITION 1.5. If j:M — V,, j(6) = A for some § < A and X s regular,
then ||7|| < 7(r) for each Te MN3"M.

PROOF. Let n = supj”§ < A. First of all we want to show that | f||M¥ <
(7(f))(n) for every ordinal-valued function f € M defined on §. This is done
by simple induction on the norm |f||M. If ||f||M = B+ 1, then there is some
function g € M on § such that ¢ < f and ||g|™ = B8 < (5(9))(n). But the
proof of Proposition 1.1 shows that g < f implies (5(g))(n) < (7(f))(n) and so
I£IIM = B+ 1<(5(f))(n). The case of limit ||f||™ is similar.

Presently, if ||7]| > j(7) and j(a) = 7, then there exists a function g: A — 7 such
that ||g|| = j() and so in M there is a function f:§ — a such that | f||¥ = 7. But
then 7 < (5(f))(n) < 7(@) = 7, a contradiction. O

COROLLARY 1.6. If A s a regular cardinal and (k,A) — (u, < A), then ”u“ <k.
In particular, Chang’s Congecture (A\*,)) — (A,, < A) implies ||| =

2. Cardinal exponentiation. Using some elementary embeddlngs we can
obtain a few inequalities in cardinal arithmetic.

LEMMA 2.1. If M - V,, j(8) =X, p€ "M, p= (p°)t and p € M, then
P <)

PROOF. Let j(n) = p and assume to the contrary that p* > j(u). Hence
there exists some function from *p onto j(u). So in M there is a function which
transforms (®n)M onto u. As n < p, the contradiction u < |(®n)M| < p® < u
establishes the Lemma. O

COROLLARY 2.2. If (k,A) — (u, < v) and p* < u for all o < v, then p* < k.
Therefore, if k 1s v-Rowbottom and 2* < k for all o < v, then k s the strong limit
cardinal. O

REMARK 2.3. If 2¥ < N, and R, is Rowbottom, then X, is the strong limit
cardinal. By Theorem 84 from [3] and Corollary 1.4 we can even evaluate that
2Rn+1 = 9Rn or PRn+1 < (R, 49) for all n < w, whenever j: M — V,, is an arbitrary
elementary embedding such that 7(R,) = R,, and some countable ordinal is moved
by 7. O

REMARK 2.4. If a cardinal « is not strong limit, then the property (x,\) —
(k,< ) fails for the least A < « such that 2* > k. O

The same arguments can be used for proving

LEMMA 2.5. If:M - V,, j(6) =X, p€ j"M, u= (6°)" and u € M, then
AP <j(p). O

COROLLARY 2.6. If (k,A) — (4, < v) and o < p for all @ < v, then \? < k.
Therefore, if k 1s v-Rowbottom and o < k for all o < v, then \* < k for all
A<k. O

LEMMA 2.7. If (k,A) = (u,< A), cf(v) =X and o* < p for all o < v <,
then v» < k. Hence 2¥ < k, if v < pu 1s a strong limit singular cardinal with

cf(v) =\
PROOF. Choose an elementary embedding j: M — V.1, such that j(6) = A for
some § < A, j(7) = « for some 7 > p and p,v € j”M. But j(v) = v implies

A= cf(j(v) = 5(cf (v) 2 5(A) > 5(6) = A
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Thus v is moved by j and so j witnesses (k,v) — (u,< v). Now Corollary 2.6
completes the proof. 0O

Galvin-Hajnal’s method [2] and Corollary 1.6 allow us to formulate some bounds
on v°f(¥) in certain cases of singular cardinals v > p.

THEOREM 2.8. Assume (k,A) — (4, < A). Let A <np < pandv =R, If
cf(n) = X and @* < v for all a < v, then v* < V. In particular, if v is the strong
limst singular cardinal of cofinality A, then 2V < RX.. O

COROLLARY 2.9 (MAGIDOR [4]). Presuming Chang’s Congecture (AT, ) —
(A, < A), of Ry is the strong limit cardinal, then 2% < Ry4. O

COROLLARY 2.10. IfR, is Rowbottom and R,,, is the strong limit cardinal for
some n < w, then 2%n <N, . O

The main theorem is based on the following technical

CLAIM 2.11. Let X be the least cardinal such that p* > p*. If (k,A) — (1, < A),
A<, cf(u) # X and p¥ < N\(u), then p* < k. Moreover, p*» < Kk unless K is
singular.

PROOF. Simple arithmetic shows that A is regular. Clearly, v < X < p*.
Assigning for each f € *p the sequence f = (f | aza < )) we get the branching
family F of p* functions from ) into some set of cardinality p (whenever f,j € F
and f(B) = g(B), then f(a) = g(a) for all @ < f—compare [3, p. 431]).

Let p* < o < p* be any regular cardinal. As cf(n) # A for all cardinals u < <
Ry (), the proof of Lemma 35.2 in [3] shows how then to construct a branching
family G of ¢ functions f: A — n for some n < p, n < A or c¢f(n) = X. But Corollary
1.2 gives |G| < k, so we are done. O

LEMMA 2.12. Ifv <y, cf(u) < v or p 1s regular, (k,A) — (u, < ) holds for
every reqular v < A < p and k= < p¥ <N+ (1), then p<F =p¥. O

COROLLARY 2.13. Assume (A*+,)) — (A, < X). Then 2<* = X implies
22 = At and At < 2<* < Ry, implies 2* =2<*. O

THEOREM 2.14. Let v = sup{\ < k: X is regular and (k,\) — (k,< A) fails}.
Ifv < k and k= < 2 < N +(k), then 2<F = 2¥. In particular, if k is vt-
Rowbottom and k < 2¥ < R+ (k), then 2<F =2V,

PROOF. If v < k then (k,A) — (k, < A) for every regular v < X < k. It is easy
to see that then x is regular or cf(x) < v (compare Lemma 2 in [8]). Applying
Lemma 2.12 we finish the proof. O

COROLLARY 2.15. IfR, is Rowbottom and R, < 2% <N, ., for somen < w,
then 2% =28 0

REMARK 2.16. If k is v-Rowbottom and k < 2<% < Reg(,)(k), then 2<% =
2<v. 0O

QUESTION 2.17. Under the notation of Theorem 2.14, is v < k whenever « is
Joénsson?
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3. The first critical point. The least ordinal moved by an elementary embed-
ding 5j: M — V, is regular in M. Thus the correspondence between Rowbottom-
type properties and elementary embeddings shows that the first cardinal v < u such
that (k,v) — (u, < v) is regular. We shall prove that such v cannot be strongly
inaccessible, whenever u = k.

LEMMA 3.1. Assume that (k,v) — (k,< V) and v < k 15 a limit cardinal. Let
X < k be the least cardinal such that X > v and the property (k,\) — (k, < ) fails.
If veE(¥) < ), then there exists p < v such that (k,v) — (k, < p).

PROOF. Set A = {0 < v:(k,0) — (k,< o) fails} and n = supA. If n < v,
then our statement is true for p = n*. If this were false, there would be some
strictly increasing sequence (04: a < cf(v)) of elements of A, cofinal in v. For each
a < cf(v) we can find a partition fu:[k]<¥ — 04 such that |fJ[X]<*| = o4 for
every X C k of size k (a counterexample for (k,0,) — (k, < 04))-

Put B = [[,<ct(,) 9a and define g: [k]<“ — B setting g(s) = (fa(s): @ < cf(v))
for each finite subset s C k. As |B| = v°f(*) < X, the definition of A supplies a
set X C k such that |X| = k and |¢”[X]<“| < v. On the other hand, |¢"[X]<¥| >
SUDq <cf(v) | fa[X]<¥| > v by definition of g. This contradiction establishes the
Lemma. O

COROLLARY 3.2. If v < k 1s a strong limit cardinal and (k,v) — (k,< V),
then (k,v) — (k,< p) for some p < v. Thus the least cardinal A < k such that
(k,A) = (K, < A) cannot be strongly inaccessible.

PROOF. Let A < k be the least cardinal such that A > v and (k,\) — (k, < A)
fails. Observe that A is v-Rowbottom. Since 2< = v, the cardinal A is strong limit
by Corollary 2.2. Now v<f(*) = 2¥ < X and our claim follows from Lemma 3.1. O

QUESTION 3.3. Is the least A < k such that (k,\) — (k,< A) is always a
successor cardinal?

THEOREM 3.4. Every strongly inaccessible Jonsson cardinal & is p-Rowbottom
for some p < k.

PROOF. Let A < k be any regular cardinal such that (k,A) — (k,< A). The set
S ={v < k:cf(v) = A and v is strong limit} is stationary in k. Lemma 2 from (8]
shows that (k,v) — (k,< v) for every v € S. By Corollary 3.2, for each v € S
we can choose some p, < v so that (k,v) — (k,< p,). By Fodor’s Theorem there
exist some fixed p < k and a stationary subset T C S such that (k,v) — (k,< p)
for each v € T. This means that  is p-Rowbottom, since T is unbounded in k. O

QUESTION 3.5. May we erase the word “strongly” from the above Theorem?

4. Jénsson models and successor cardinals. We showed in (8] that a
successor cardinal kt is not Jénsson, whenever k is regular. Alternatively, k™ is
not Jénsson under 2¢ = x* [1]. Shelah’s method from [6] enables us to weaken
this presumption.

We say that a regular cardinal u is a possible scale for the sequence (ki:¢ < A)
of cardinals iff there exists a sequence (f,: @ < p) of functions on A such that

(i) fa € [l;cp ki forall a < p,

(ii) [{e < X: fa(d) > f3(2)}| < A for all & < B < p. (We shall write f, < fg.)

(iii) For every f € [],., ki there exists o < p such that |[{¢ < X: f(1) < fa(¢)}| =
A (compare [6]).
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LEMMA 4.1 (SHELAH [6]). Let j:M — V, and N = 7"M. If u 1s a possible
sclae for the sequence (ki:t < \) € N of regular cardinals, \+1 C N and j(u) = u,
then |{t < X:j(ki) = K} = A

PROOF. Set A = {i < A:|N Nk;| < k;} and assume to the contrary that
[MA| < A. As N is the elementary substructure of V., some sequence (f,:a <
u) € N exemplifies that u is a possible scale for (k;:7 < A). For each 1 € A the
subset B; = {f,(?):@ € N Nu} of NNk, has cardinality less than «;, so we may
choose sup B; < f(i) < k; by regularity of k;. Accepting f(z) = 0 for 7 € \\A, we
have f, < f for every o € N Nu. As the relation < is transitive and the set NNy
is cofinal in u, fo < f for every a < u, which is impossible. O

THEOREM 4.2. If k*(®) =kt then kt is not Jonsson.

PROOF. By our first remark in this item we may assume that A = cf(k) < «.
Suppose that k* is Jénsson and pick an elementary embedding j: M — V4,
such that j(a) = a for all @ < A, j(v) > v for some v < k and j(kt) = kT (see
the proof of Theorem 1 in [8]). Then there exists some strictly increasing sequence
(kiz1 < A) € 3" M of cardinals, cofinal in &, with kg > v.

Cantor’s diagonalization method shows that every family of x functions f €
[Li<, £f* has an upper bound in the relation <. Since |[],, k}1| = £* = ¥,
k* is the only possible scale for (k7 *:¢ < )). Now, by Lemma 4.1, the set A =
{i < X:j(k}T) =k} T} is unbounded in X. But each «]*, where 1 € A, is Jénsson,
contradicting [8]. O

COROLLARY 4.3 (SHELAH [6]). If 2% = Nyiqt1 and cf(y) < Noi1, then
28a cannot be Jonsson. O

With a slight modification, a similar argument can be used for

LEMMA 4.4. If kt 1s Jénsson, A = cf(k) > w and p* < k for p < k, then the
set {p < k: p* s Jonsson} contains some closed unbounded subset of k.

PROOF. Let j:M — Viiyy, j(a) = a for all o < A, j(v) > v for some
A < v < kand j(k*t) = k*. Choose a strictly increasing continuous sequence
(pi:t < A) € J”M of cardinals, cofinal in k, with pg > v. Suppose by way of
contradiction that the set S = {¢ < A: p} is not Jénsson} is stationary in A.

Set k; = pf for s € S and k; = pf T for s € A\S. Thus no «; is Jénsson.
Since S is stationary, by an analogue of Lemma 8.5 stated in (3], every family of
almost disjoint functions f € [[; ., k; has at most kT elements. But every family
of k functions f € []; ) k; has an upper bound in the relation <. Thus «* is
the only possible scale for (k;:7 < A). Now each element of the set {k;:¢ < A and
J(ki) = ki} # & is Jonsson, contrary to our choice. O

REMARK 4.5. We recall another result of Shelah from [6] which can be for-
mulated as follows: If pf(x) < k for all p < k and k™ is Jénsson, then the set
{\ < k: X is a regular Jénsson cardinal} is unbounded in «. Hence, if ) is arbitrary
and A¥ = R,, then N4 ,+1 cannot be Jonsson. O

We can also leave out one assumption in Shelah’s result [6].

LEMMA 4.6. If (At)¥ = At for all singular cardinals )\, then no successor
cardinal 15 Jonsson.
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PROOF. Suppose to the contrary that k¥ is the least successor cardinal which
is Jonsson. There are now two cases:

Case I: cf(k) = w. Then k°f(*) < (k*)¥ = k* and a contradiction follows from
Theorem 4.2.

Case II: k > cf(k) > w. First, collapse cf(k) onto w; using the notion of forcing
P = {p:pis a function with dom(p) € wy and ran(p) C cf(k)} ordered by inclusion.

Let G be any generic filter on P. Since |P| = cf(k)¥ < &, it follows from [8] that
kT remains J6nsson in the forcing extension V[G] of a ground model V. Clearly,
since P is wi-closed, w; is preserved and cf(k) = wy in V[G]. Moreover, |P| is
collapsed onto w; and every cardinal A > |P| in V remains a cardinal in V[G]. The
equality (A*)® = A7 is also true in V[G] for every singular cardinal \.

From now on work in V[G]. Let j: M — V., witness that «* is Jénsson. Pick
some strictly increasing continuous sequence (k;:7 < w1) € 7”’M of cardinals with
cofinality w, cofinal in . Since | [[;; k}| < (k)“ = &{ for all 1 < wy, by Claim
13 from [6] the successor k% is a possible scale for (k] :7 < wi). It follows from
Lemma 4.1 that the set A = {1 < wy:j(xk]) = &} } is unbounded in w;. But if
i € A and k] is greater than the first ordinal moved by j, then &} is Jénsson,
which is a contradiction because cf(k;) = w and (k;)* = k}. O

The same proof shows

LEMMA 4.7. Assume the Singular Cardinals Hypothesis. Then 2% < k implies
that k* 1s not Jonsson. 0O

LEMMA 4.8. No successor cardinal above a compact cardinal 1s Jonsson.

PROOF. Solovay showed that the singular cardinals hypothesis holds above the
least compact cardinal (see [3, p. 405]). Now proceed as in the proof of Lemma
46. O
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