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HOMOGENEOUS BOREL SETS

FONS van ENGELEN

Abstract. Topological characterizations of all zero-dimensional homogeneous abso-

lute Borel sets are obtained; it turns out that there are u, such spaces. We use

results from game theory—particularly, about Wadge classes.

1. Introduction and preliminaries. All spaces under discussion are separable and

metrizable. We will assume that the reader is familiar with the main facts about

absolute Borel sets (see [3 or 7]). Notation follows [7].

In this paper we describe and characterize all homogeneous Borel sets in the

Cantor set that are not in A°3 (i.e., they are not both FaS and GSa). Together with [1],

where all homogeneous Borel sets in 2" of class A°3 were determined, this yields a

complete topological classification of all zero-dimensional homogeneous absolute

Borel sets. Roughly, using the inductive definition of the non-self-dual Borel Wadge

classes as given by Louveau [5], we show that the Wadge class of a non-A°3

homogeneous Borel set in 2" is non-self-dual and reasonably closed (for definitions,

see below); then we can apply a theorem of Steel [8] to get what we want.

Let Z be any space. If T C 0>{Z), then f = {A c Z: Z\A g ¿T}, and A(r) =

T n f. T is called self-dual if T = f. Mostly, we work inside the Cantor set 2",

denoted by X. Let Qi = {x G X: 3mVn > m: xn = /'}, for i G {0,1}. Then Q0 ~

Qx = Q, the space of rationals. If x £ Q0 U Qx, then x consists of blocks of zeros

separated by blocks of ones; define <p: X\(Q0 U Qx) —> X by <t>(x)n = 0 if the «th

block of zeros in x has even length, and <$>{x)n = 1 otherwise. Note that <i> is

continuous.

1.1 Definition (Steel [8]). (a) T cz ̂ >(X) is a reasonably closed pointclass if

$~X[A\ U Q0 g r for each A g T, and f~l[A] g F for each ieT and each continu-

ous f: X —> X. (b) A c X is everywhere properly T if for each open U + Qi in X we

have U DA <=T\t.

1.2 Theorem (Steel [8]). If F is a reasonably closed pointclass of Borel sets, and

A,B c X are everywhere properly T and either both meager or both comeager, then

h[A] = B for some autohomeomorphism « of X.

Now let Z g {X,ua}. If A,B c Z, define A *S w B if A = f'l[B] for some

continuous /: Z ^> Z. The Wadge class of A is [A] = {B c Z: B < WA}, and

F c £?(Z) is a Borel Wadge class in Z if T = [A] for some Borel set A in Z. Define
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the Wadge ordering < on the Wadge classes by r¡ < T2 if r, c T2, and Tx < T2 if

Tx < F2 and Tx ¥^ T2. Using game theory, it can be shown that if Tx, T2 are Borel

Wadge classes in Z, then Tx < T2, Tx G {r2,f2}, or T2 < Tx. Furthermore, if

r, < F2, then also Tx < f2 (and hence fj < T2, T2). Thus, if we consider < to be

an ordering on pairs ( T, T} of Borel Wadge classes, then < becomes a linear

ordering, and, in fact, a well-ordering in type < w2 (see Wadge [10]; for some

proofs, see [7]).

By van Wesep [9] the pattern of dual and non-self-dual Borel Wadge classes in the

Wadge ordering on wu is as follows: The first element is {{ 0 }, {w"}}; a successor

is self-dual if and only if its predecessor is not; at limit stages of cofinality w stands

a self-dual class; and at limit stages of cofinality w,, a non-self-dual pair. Since we

want to apply Theorem 1.2, we have to consider Borel Wadge classes in X instead of

co". In [5] Louveau has given construction principles "from below" for the Borel

Wadge classes in w"; but analyzing his results and proofs, it can be seen that the

same inductive definition can be given for the Borel Wadge classes in X, with one

exception: In the Borel Wadge ordering in X, the limit stages of cofinality to are

occupied by non-self-dual pairs (see Theorem 1.5(b)).

The following definitions and theorem are all due to Louveau for w" instead of X.

1.3 Definition. Let T, T' c 0>(X), and let A c X.

(a) A g 7)^(2°) if there is an increasing sequence (A¡: f < tj) of Z^-sets such that

A = Ut(At\Uß<£Aß), where f ranges over all even (odd) ordinals < n if n is odd

( even ).

(b) A g Sep(Z)1I(2j!),r) if A = (Ax n C)U(A2\C) for some C G Z>„(2| ), Ax

g f, a2 g r.

(c) A g Bisep( Z>,,(2£), T, T') if A = (Ax n C,) U (A2 n C2) U ß \ (C, U C2) for

some disjoint Cx, C2 g 7)^(2°), and some Ax G f, A2 g T, B g I".

(d) A G SU(2|, T) if A = U„ew(/1„ D Cn) for some sequences (C„)„ of pairwise

disjoint 1,^-sets, (An)n of elements of T. The set U„ejCn is called the envelope of A.

(e) A GSDI)«2°,SU(20,r)>,r') if A = \J{<n(At\öß<tCß) U B\U{<& for
some increasing sequences (A^: f < r/) of elements of SU(2?, T), and (Cf. f < r/) of

1.^-sets such that Aç c Q C Aç+X and Ct is the envelop of' A^, and some B G Y'.

In (c), (e), we omit T'if F'= { 0 }.

To simplify exposition, in writing, e.g., "A G Sep(D (2°), T), say A = (Ax n C)

U ( A 2 \ C)", we always assume that the sets Ax, A2, C are chosen as in the above

definition. Louveau now selects a certain subset D of w", its elements being called

descriptions, and for each u G D, a non-self-dual Borel Wadge class Tu is defined.

Also, the type t(u) G {0,1,2,3} of a description u is defined, and with each u g D

of type 1, an element ü G D is associated, everything according to the following

definition (where sometimes v g <¿x is considered as a pair (v0,vx) or a sequence

(i>„: « g w) of elements of w"; 0 g w" has all coordinates 0):

1.4 Definition, (a) 0 g D, T0 = ( 0 }, r(0) = 0.

(b) Ifu = | Al AT)A0, w«eré> | > 1, 7) > 1, ?«<?« m G X>, T„ = Z>,(2£). 7/ tj is limit,

then t(u) =2; // r/ = tj0 + 1, then t(u) =1, and ü = 0 if n0 = 0, U = £a1at/0a0,

otherwise.
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(c) If u = £A2Ai)AM*, where i>\, tj > 1, u* g 73, w*(0) > £, /«e« m G 7),

r„ = Sep(7)71(20),ru,), W/(W) = 3.

(d) 7/« = ¿A3A7?A<«0, ux), where £ > 1,7/ > 1, u0, «, g 7), M()(0) > £, i/x(0) > |

or k, = 0, a/id rU| < ruo, /«<?« M G D, Tu = Bisep(7>„(2°), rv 1^). If ux = 0 ou*

7) = tj0 + 1, then t(u) = 1, and ü = u0 if 7)0 = 0, ü = ¿a2at)qM0, otherwise. If

«, = 0 a«<7 tj is «'««/, then t(u) = 2. If ux(0) > £, then t(u) = 3. 7/m,(0) = £, /«<?«

í(m) = i(u,), W« = ¿A3A7)A(t<0,w1> if ' t(ux) = 1.

(e) //« = |A4A<u„: « G «>, wAere £ > 1, é-ûcA «„ G D, Tu < Fu+i, <«n(0)>„ «

nondecreasing and supu„(0) > £, /A<?« m G 7), T„ = SU(2£,U„eur„o), /(«) = 2.

(f) //« = £ A5 A77 A(Mo, Ml>, wAere £ > 1, tj > 2, «0, Ml g Z), u0(0) = £, «0(1) = 4,

w,(0) > £ o. m, = o, a«d rH] < r„o, /Ai« M g d, yu = sd„«2°, rMo>, rUi). //«, - o

/«e« /(«) = 2. If ux(0) > £, /Ae« f(u) = 3. If ux(0) = £, /Ae« /(«) = í(h,), a«<7 w =

¿A5A7,A<Wo,ö1>///(Ml)=L

1.5 Theorem, (a) 7//(w) = 1 and u(0) = 1, r«e« Ts < r„, a«d A(TM) is the unique

Borel Wadge class T such that ra < T < Tu.

(b) If t(u) = 2 and u(0) = 1, then h(Tu) = U„GcJFI( for some strictly increasing

sequence of described classes (Tu ) (for w", Louveau has that A(rw) is the unique

Borel Wadge class T such that Tu  < T < Tu for all « g u> ).

(c) If u(0) > 1 or t(u) = 3, then A(r„) = U{rUa: new,} for some strictly

increasing sequence of described classes (Tu )a.

From this theorem, it is easily deduced that (r„: «efl)U{fB: u g D) U

{A(TJ: u e D, t(u) = 1, w(0) = 1} is the set of all Borel Wadge classes in X.

2. Closure properties. The statements in the following lemma were proved in

Louveau [5] for Borel Wadge classes in ww. However, the proofs work for X as well.

2.1 Lemma. Let u G D, u(0) = £.

(a) SU(2°, rj = r„, and if r, < & rA«i SU(2°, f„) = f„.
(b) Tu a«i7 ru are closed under union and intersection with a A0ç-set.

(c) Ifu(\) = 4, then Tu is closed under union with a 2°-se/.

(d) If t(u) = 3, then Tu and Fu are closed under union with a 2pse/ and under

intersection with a Yl^-set.

(e) If u = £ A3A7]A(u0, ux), and A g r„, then there exist C g 2¡ and B g 1^

such that A = (A n C) U (fi \ C), W oo/« ^ n C a«<7 C\^ are in

Bisep(Z)7)(20),r„()).

(f) 7//(m) = 1, then Tu = Bisep(2£, T5), with ü as defined in 1.4.

(g) 7/ /(«) = 2, /«e« TH = SU(2j, U„Sl0Tu ) for some strictly increasing sequence

(Tu )n of described classes with un(0) ^ | /or a// n e to.

In this section we will prove more closure properties of some classes Tu, Tu similar

to (a)-(d) in the preceding lemma.

2.2 Lemma. If A°3 c rM a«<7 u(0) > 2, then Tu is closed under intersection with a

FT 2-set and under union with a 22-se7; hence so is Tu.



676 FÖNS van ENGELEN

Proof. If not, there is a minimal class Tu for which it fails. By 2.1(d) the lemma

holds if t(u)= 3, and by 2.1(b) if u(0) > 3, so we have u(0) = 2 and /(«)g {1,2}.

Case 1. t(u) = 1. By 2.1(f), Tu = Bisep(2^, T5). Since A°3 C F, also A°3 c TB

(otherwise ru = A°3, but Tu is non-self-dual). In Definition 1.4 we see that in (b) we

have ra 1> A°3, so we must be in (d) or (f), whence w(0) > 2. Since Fa U Tu c r„, we

have Ts < r„, so by minimality of Tu, Ta has the described closure properties. Let

A g T„, say .4 = (Ax n Cx) U (^2 n C2). If F g I^, then ^nfef^^nfe

r5, so A n F=(Axr\ F n C,) U(^2nFn C2) g r„. If G g 2f, let C¡*, C2*

reduce C, U G, C2 U G. Then A U G = ((vl, U G) n Cx*) U ((/12 U G) n C2*) g

r«.
Case 2. r(«) = 2. By 2.1(g), T„ = SU(2^,U„eû,r„ ). If each T„ c A°, then

r„ c SU(25, A°3). Now if í;g3a1a1a0, then T,, = 2?, so by 2.1(a), we have

SU(2°, A°3) c SU(2°, 2°) n SU(2°, 11°) = 2° n n° = A°3, so Tu C A°3, a con-

tradiction. Thus we conclude that A°3 c Tu for some «, and hence A°3 c TUn for all

m > «. Since «„,(0) > 2 and r„ < Tu, each r„ has the described closure proper-

ties; now proceed as in Case 1.    D

2.3 Lemma. If u(0) > 3, or u(0) = 2 and t(u) = 3, then Tu is closed under union

with a U°2-set.

Proof. If the lemma fails, there is a minimal ru for which it does. Since the

lemma is true if u(0) ^ 3 by 2.1(b), we have «(0) = 2 and /(«) = 3. Let F g Yl^.

Case 1. «(1) = 2, so Tu = Sep(D„(2^), Tu,), u*(0) > 2. If A g Tu, say A = (Ax n

C)U(A2\C), then /l.Ufe f„„ A2U F(E Tu. by 2.1(b), so A U F = ((^ U

F)nC)U(/l2UF)\Cer,

Caie 2. m(1) = 3, so r„ = Bisep(.D„(Z2), r„o, Tu¡), u0(0) > 2, and ux(0) > 2 or

(ux(0) = 2 and t(ux) = 3). If A g r„ say

^ = (Ax n Cj u(^2n C2) ufi\(C, u C2),

then i,UFe f„o, /i2UFe r„o by 2.1(b), and B U F G TMi by 2.1(b) if ux(0) > 2,

and by minimality of Tu if w,(0) = 2. So

^ u F= i(Ax u F) n Cj U((^2UF) n c2) u(£u F)\(C! u C2) g r„.

Gu<? 3. w(l) = 5, so Tu = SDT)«2°, r„o>, rU[), «0(0) = 2, w0(l) = 4, and Ml(0) > 2

or (ux(Q) = 2 and /(w2) = 3). Let A g Tu, say

-4= UU\ UcJuBxUq.

Since X\ F g 2^, and «„(0) = 2, by 2.1(a) we have ^n(I\F)er„o, and it is

easily verified that the envelop of Aer\(X\ F) is Ctn(X\ F). Also B U F G r

as in Case 2. So

,4uf= IJ (Kn(x\F))\ lj(t> n(*\F)))

u(fiuF)\U(crn(Af))er,   n
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2.4 Corollary. Ifu(0) > 3, or u(0) = 2 andt(u) = 3, then SU(2°, f J = tu.

Proof. If /l g SU(2°, fj, say A = UneuMB n C„), then X\A =

U„e„(C„ni\^)uJi\U„£uC,, Now l\Aer„, so UBew(CBnX\^„)e

SU(2°, rj = r„by 2.1(a), and X\Un6<0CM g IT«; thus, X\A g Tu by 2.3, whence

/l   G f„.     D

3. Existence of homogeneous Borel sets. Some notation: If we apply the opera-

tions of 1.4 in a space Z, then we obtain classes r„(Z) (so r„ = TU(X)). Inductively,

it is easily shown that if Z c X, then A g TU(Z) if and only if A = B n Z for some

B g r„, and similarly for fK (for the cases of 1.4(d), (e), use the reduction property).

We write Zx ~ Z2 if Zx is homeomorphic to Z2, A: Zx = Z2 if A is a homeomor-

phism.

3.1 Lemma. 7/A°3 c r„ and u(0) > 2, aw///fi cíje r,„ Tí « A, then B g r„,

and similarly for iu.

Proof. Let /: A ~ B. By Lavrentieffs theorem (see [4 or 2]), there exist LT2-sets

G, H in X with A c G, 7? c 77, and a homeomorphism /: G -» 77 extending /.

Since /l G r„, also A G r„(G), so B g r„(7/), say 7i = B n 77 with 7? g r„. Since

77 g n2, by 2.2 we have B G Tu. The proof for tu is analogous.    D

3.2 Definition. If A°3 c Tu and u(0) > 2, /Ae« a zero-dimensional space Y is

everywhere properly 2PU (resp. @u) if some copy of Y in X is everywhere properly Tu

(resp. tu).

Note that from 3.1 it follows that if Y is everywhere properly 0>u (resp. &u), then

each dense embedding of Y in X is everywhere properly r„ (resp. Tu), and that

"everywhere properly áau" and "everywhere properly &u" are topological properties.

3.3 Lemma. If A°3 c r„ and «(0) > 2, let <&u° (W1), 2£* (%l) be the classes of all

zero-dimensional spaces that are, respectively, everywhere properly 3PU and first

category (Baire), everywhere properly &u and first category (Baire). Then up to

homeomorphism, each class contains at most one space, and if it exists, this space is

homogeneous.

Proof. To prove the first part of the lemma, it suffices to show that Tu and tu are

reasonably closed. For then if, e.g., A, B g ty®, and Ä, B are copies of A, B in X

that are everywhere properly Tu, then A and B are meager, so we can apply

Theorem 1.2; the other cases are similar. So let </> be as in §1, and put P =

X\ (Oo u ôi)- If A e r«>then clearly ^_1[^] g Tu(P). Hence for some Ä g r„, we

have <jrl[A] = A' n P. Since P g n°, d>~l[A] e Tu by 2.2, and hence <t>~l[A] U Q0

G Tu by 2.2, since Q0 g 22. The proof for f„ is the same.

For the second part of the lemma, note that if A is in one of the defined classes,

then any nonempty open-and-closed subset of A is in the same class since u(0) 3s 2

(use 2.1(a)), and hence it is homeomorphic to A; such a space is called strongly

homogeneous, and it is not hard to show that any strongly homogeneous zero-dimen-

sional space is homogeneous (see e.g. [6]).    D
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Thus, if Y is in one of the above classes, then Y is a homogeneous space that is

topologically characterized by the properties describing the class.

We now determine which of the classes are nonempty.

3.4 Lemma. 7/A°3 c r„ andu(0) > 2, then %° and 2?l are nonempty.

Proof. Let Z g tu\Tu, and let O = \J{U: U open in Z, U g Tu). Then for some

Un g Tu with Un open in Z, we have O = U„euU„. Let Ü„ be open in X with

Ü„ n Z = U„, and let <F„>„ reduce (Ün >„. Then F„nZ= K„ n t> fl Z = F„ n t/„,

[/„ g r„, u(0) > 2, V„ G 2°, so by 2.1(b), V„ n Z g r„. So O = U„ei0(F„ n Z) g

SU(2°, TJ = r„ by 2.1(a). Put Z = Z\0; then Z # 0 since Z <£ r„. Since Z =

Z \ U„ e aV„, and *\ U„ e UFB g n° c A°2, we have Z g f„ by 2.1(b). We claim that

no nonempty open subset U of Z is in r„. Indeed, if U G r„, choose U open in X

with Ü Pi Z = Í7; then

<ynz=((*\ IJ K,)n(c7nz))u U {(Ün Vn)n{VnnZ))
\ ^ new' /        «eu

Gsu(2°,rJ = ru

by 2.1(a), so(/nZcO, contradicting 0 * Î7c (¿7n Z)\0. Now let Z' be a

densely embedded copy of Z in X (which exists since Z contains no isolated points),

and put Y = X\Z'. Also, let g be a countable dense subset of X, and put

FH° = g X /cJíxiWe identify Ixl with X, and claim that Tu° g <^0. First

note that, by 3.1, Z' g f„, hence Y g r„ and {q} X Y g r„, so

ßx y= U ({a}xyn{a}x^)Gsu(2(»,r„) = ru.

Now if F is a nonempty open subset of X X X, then F n F„° ̂  0, say (a, x) g K

n yH0. Then U = ({q} X Y) O V is a nonempty open subset of {a} X Y, and also it

is closed in V n Fu°. So if V n F„° were in f„, then also Í7 g f„ by 2.1(b); but then

Y contains a nonempty open subset U' with U' g fu, say U' = Ü C\ Y with i7 open

in X Then Ü C\ (X\U) = Ü P) Z' is a nonempty open subset of Z' which is in Tu

since Ü g 2°, Z\ Í7 G r„, u(0) > 2, a clear contradiction. Thus, Y° is everywhere

properly Tu, and obviously it is first category; so y„° g <3f°. Arguing as above, it is

easily seen that (X X X)\ Y? <= S\.   D

If we try to prove that SU® and W] are nonempty by replacing Tu in the above

proof by Tu, then we see that we need SU(22, Tu) = Tu; as we shall see in Lemma

3.6, this is not always the case. However, from 2.4 we see that the following holds:

3.5 Lemma. If A°3 c r„, and u(0) ^ 3 or (u(0) = 2 and t(u) = 3), then 2?® and

<y^ are nonempty.    D

In fact, if Z\ and Q are as in the proof of 3.4, then Z°u = Q X Z\ g 3^, and

*3\Z°e0?.

3.6 Lemma. 7/A°3 c Tu, «(0) = 2, andt(u) g {1,2}, then <&l = 0 = &?.
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Proof. If Z g 2f° is densely embedded in X, then I\Ze <&¿ (argue as in the

proof of 3.4), so it suffices to show that ^ = 0. We will prove that if A c X is

everywhere properly r„, then A is first category. First take t(u) — 2. By 2.1(g),

r„ = SU(2«,U„ewrHii) so we can write A = U,6,(ii, n C„). Let C„ = Um6ü)C:,

with Q G n°; then if A„ G T^, also Q n A = C^ n^„G T„a since ha (0) > 2,

C„" g A°2, using 2.1(b). If U * 0 is open in A, say ¿7 = Ü n ^ with ¿7 open in X,

and if U<ze¿nA„, then Í7 = ¿/ n C^ n ^„ g r„4 c f„ since T„a < r„, a con-

tradiction. So C£ n A is closed and nowhere dense in A, whence

A=   U   iQ',nA)
n. m e u

is first category. If /(m) = 1, note that since A°3 c r„, we have u + 0 whence

U(0) > 2. Since ru = Bisep(22, Ts) by 2.1(f), we can argue as above.    D

4. The Wadge class of a homogeneous Borel set. In this section we show that if Y

is a homogeneous zero-dimensional absolute Borel set, and y £ A°3, then Y g <W® u

^ U 2t* U ^ for some u g F», w(0) > 2, A°3 c r„.

4.1 Lemma. Let Y be a homogeneous Borel set in Xwith Y € A°3. Let Tu be the least

described class such that A G r„ U Tu for some nonempty open subset A of Y. Then

A°3 c Tuandu(G)> 2.

Proof. If A(3 € Tu, then r„ U f„ c A(3 whence A g A°3. Let x g A, and by

homogeneity of Y, let A v: Y ~ Y be such that A ,,(.*) = v. Take a countable

subcovering {hv [A]: n g to} of the open covering {A ,.[.4]: v g y} of y and let Un

be open in X such that t/„ n Y = A,. [^]. If (Vn)„ reduces (U„)„, then

v„nY=vnnu„nY= vn n a.J^i] g a°3,

so y = U„ew(F„ n y) G SU(2°, A°3) = A°3 (see the proof of 2.2 Case 2), a con-

tradiction. So A°3 c r„.

Now assume u(0) = 1.

Caje 1. r(«)-2. By 2.1(g), r„ = SU(2°,U„eur„n). If A G Tu, say ¿ =

U„e„(^4„ n C„), then some C„ n /4„ = C„ n A is a nonempty open subset of A,

hence of y; but An g some r„ , uk(0) > 1, so C„ n i4„ g ruj by 2.1(a), contradict-

ing minimality of Tu since Tu < Tu. If A g fM, then ^\^4 = U„^u(An n Cn), so

A = U„6W(C„ n *\¿n) U *\UBeuC„. Since fUj < rw each *\¿B G \JkTUk,

so if some C„ n i\^„ # 0, we obtain a contradiction as above; thus, A =

^\Un€(1)C„ g n° c A(3, which is impossible.

Case 2. u= 1a1atj + 1A0. Then r„ = 7)^,(2?), so .4 eA».

Case 3. u = 1 a2atjaw*. Then Yu = Sep(7)^(2?), Tu.), M*(0) > 2. If ^ € r„, then

/( = (^ n C)U(^2\C), CG 7)^(2?). Let C = \Jt(Ce\\Jß<tCß) as in Definition

1.3(a).

(i) If Cf n A = 0 for all f < tj, then ,4 = ^2\Uf <rfs. Since ¿2 g r„„ and

X\\Jt<rft g n° c A°2, we have /l g Tu, by 2.1(b); but r„, < Tu, contradicting

minimality of T .
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(ii) Let a < v be minimal with Ca n A + 0. If a and 77 are both even or both

odd, thenCa\U/3<aC/jc X\C, so CanA = Ca n ^2\ C. Since Ca n X\C e A°2,

Ca n A g ru. as above, and Ca n A is a nonempty open subset of y. If a is even

and 77 is odd, or conversely, then Ca\{Jß<aCß c C, so Ca n A = Ca Pi C n ,4, g

fw,, which again is impossible. If yl g fu, then ä"\j4 = (^ n C) U (v42\ C), so

A=((X\Ax)nC)u(X\A2)\C. Put l, = AAer„, i2 - X\A2 g fu.,
and argue as above.

Case 4. u = 1A3 Al a<h0,0), h0(0) > 2. Then r„ = Bisep(2°, ruo) by 1.4(d) and

2.1(0- If A g r„, then A = (Ax n Cx) U (A2 n C2). Now C, n ^°= C, n A¡, and

either /I, n C, or yl2 n C2 is nonempty. Since C, G 2° c A°2, we obtain from 2.1(b)

that A, n C, G f„, A2 n C, g T., so we have a contradiction.1 1 Uq> ¿ 2 «0'

If A g f„, then X\^ = (Ax n C2) U (/12 n C2), so/1 = (C2 n JV\^2) u (C2 n

A'\/12)UA'\(C1UC2). Since X\^2 g r„o and X\A2^tUo, we must have

C^ X\A¡- 0 by the above argument, so ,4 = X\ (Cx U C2) g n? c A°3, another

contradiction.

Case 5. u = 1A3 atj + 1 A(w0,0>, tj > 1, «„(0) > 2. Then r„ = Bisep(2°, ra),

where ra = Sep(7)T)(21°), Tu ). It suffices to show that TB and fB are closed under

intersection with a 2°-set, for then we can copy the proof of Case 4, replacing Tu by

TB. For Ts, this follows from 2.1(a); for f¡¡, it is equivalent to Ts being closed under

union with a n°-set, and this is proved exactly as 2.3 Case 1.

Case 6. u = 1A 3 ati A (u0, ux), m0(0) ^ 2, Ml(0) > 1. Then Tu =

Bisep(F>7)(2?), r„o, rMi). If A g r„, then by 2.1(e) we can write A = (A nC)UB\C

for some C g 2?°, ä'g I^ such that ^ n C g Bisep(7)J)(2°), TUo). Since A n C is

open in /I, and since it is easily checked that Bisep(Z)7)(2°), Tu ) < T„ (use that

X g Tu since Mj(0) > 1), we must have A n C = 0, whence A = B\C. But

B g T.,', ACe A°, «0(0) > 2, so 5\ C g r„o by 2.1(b), so A g r„o < Tu, a
contradiction. If A G f„, then again by 2.1(e), we have X\A = ((X\A) n C) U

B\C for some C G 2°, B g 1^ with C\(JSf\/i) = Cn^e Bisep(7)7)(2?), T^).

Thus /4 = (/l n C) U (X\JÎ)\C, whence, as above, A = (X\B)\C. But X\B

G F,  < F,, so we again obtain a contradiction.

Case 1. u = lA5A7)A(Mo, ux), u0(0) = 1, m0(1) = 4, Ml(0) ^ 1. Then r„ =

SD,^?,^),^). If A<=TU, then A = Uf<,Mf\U,<fQ) U B\Vt<&. Put
C = Uf<,Cf. Again, it is easily checked that SD^((2°, rwo» < r„, so since C g 2°

and CnA = US<„(AS \Uß<sCß) G SD„«2?, r„o>), we have CnA= 0, so A =

B\C. By 2.1(c), T„ is closed under union with a 213-set, so fu is closed under

intersection with a n?-set. Since fief, c f„ and X\ C g n?, we have A g f„

< Tu. If A G r„, and X\A = Uf <„(/lf \U/8<?C/3) U B\\Jt<r,Ct, then use Lemma
2.1 to show that

a= \J\{(c¡\as)u Uc/})\lJcJu(^\79)\Uq

SD,((2°,r„o),f„i),

and argue as above.    D
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4.2 Lemma. Let Y be a homogeneous zero-dimensional absolute Borel set with

Y <£ A°3. FAe» for some u G D with A°3 c Tu and n(0) > 2, we have fE^u <9Ç U

2?{J U Si.

Proof. Embed Y densely in X, and let T be the least Borel Wadge class such that

A g T U f for some nonempty open subset A of Y. If T is self-dual, then

T = A(r„) for some »efl with t(v) = 1, ¡;(0) = 1 (see §1). But then Tv is the least

described class such that B g Tv U fv for some nonempty open B in Y, contradict-

ing 4.1. So T is non-self-dual, say Y = r„, and by 4.1, A°3 c r„ and «(0) > 2. Let

x g A, and for each y g y, let hv: Y ~ 7 be such that hv(x) = y. Let {hy [A]:

« g w} be a countable subcovering of the open covering { A v[/l]: y g Y} of Y, and

let U„ be open in X such that Un n Y = hy[A]. If <F„)„ reduces (U„)„, then

Now hy[A] G r„ (resp. fj if A G Tu (resp. fj by 3.1. Since F„ g 2° and

m(0) > 2, we have F„ n Y g Tu (resp. fj by 2.1(b). So y g SU(2°, Tu) - T„ (resp.

y g SU(2°, f„) = fu) by 2.1(a). A similar argument shows that if B ¥= 0 is open in

X, and B n Y were in tu (resp. Tu), then we would have Y g fu (resp. y g r„),

since B nY * 0, so fe A(r„). Hence by 1.5(c), y g Yv for some r„ < Yu,

contradicting minimality of r„. Thus Y is everywhere properly Tu (resp. everywhere

properly fu), and since a homogeneous space is either first category or Baire, the

result follows.    D

Remark. In the above lemma, we in fact have that ie^'u <&] if [F] = Yu,

and fef> <8f¿ if [Y] = tu.

We can now formulate our main theorem. Let D0 = {u g D: A°3 c T, u(0) > 2},

and Dx = {« g 7)0: w(0) > 3 or /(«) = 3}. By 3.4 and 3.5, for each u g D0, there

are elements Y°, Z\ in ty®, 2?l, respectively, and for each u G Dx, there are

elements Fj, Z° in ^J, ^u°, respectively.

4.3 Theorem.  Up to homeomorphism, {Y®,Zlu:   u G D0} U {Yf,Z°:   u € Dx)

consists precisely of all homogeneous zero-dimensional absolute Borel sets outside A°3.

Proof. Apply 3.3, 3.6, and 4.2.   D

Thus, from the remark following 4.2 and from the above theorem, we see that a

homogeneous Borel set in X is completely determined and topologically char-

acterized by its Wadge class and its being first category or Baire.

4.4 Corollary. FAere are exactly iox homogeneous zero-dimensional absolute Borel

sets.

Proof. Theorem 4.3 and the results of van Engelen [1].
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