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CO-BLUMBERG SPACES

J. B. BROWN AND Z. PIOTROWSKI

Abstract. A pair ( X, Y) of topological spaces is said to be a Blumberg pair ("BP")

if for every /: X -» Y, there exists a dense subset D of X such that f\D is

continuous. A" is a Blumberg space if ( X, R ) is BP, where R denotes the reals. Y is

co-Blumberg if (R,Y) is BP. We survey the literature concerning the relationships

between Blumberg spaces and Baire spaces and then study the relationships between

co-Blumberg spaces and separability properties.

1. Blumberg spaces. Henry Blumberg proved that (R, R) is BP in [B122], and there

has been quite a bit of research along these lines since then. See [Bn83] for a survey

with a fairly extensive bibliography.

We adopt the following notational convention: (o = w0 = N0,ñ = w1 = N1, and

c = 2". Let « denote an infinite cardinal, and consider the following properties of

topological spaces X, which are known to be closely related:

(1) no open set is the union of « or fewer nowhere dense sets,

(2) the intersection of « or fewer dense open sets is dense,

(3) (X, C) is BP for every space C with \C\ = n,

(4) ( X, disc(«)) is BP, where disc(«) is the discrete space with cardinality «,

(5) for every decomposition P of X (collection of disjoint subsets of X with union

A') of cardinality g «, there exists a dense subset D of X such that for every A g P,

A n D is open in D,

(6) AT is a Blumberg space,

(7) (X, B") is BP (B denotes the binary space (0,1} with discrete topology),

(8) for every cover P of X (with arbitrary sets) of cardinality :£ «, there exists a

dense subset D of X such that for every A e P, A n D is open in D.

(9) (X, Y) is BP for every Y with w(Y)¿n, where w(Y) is the "weight" of Y or

the minimal cardinality of a basis for Y.

(10) for every topology F on X of weight <: «, there exists a subset D of X, dense

in X in the original topology T, such that for every A g P, A n D is F-open in D.

For « = w, (1) = (2) is the definition of a Baire space, and it was shown in

[BdGo60] that for metric spaces X, Baire spaces and Blumberg spaces are the same.

It was shown in [Bd62] that for metric spaces X and Y, ( X, Y) is BP if and only if no
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open set in X is the union of w(Y) or fewer nowhere dense sets. It follows that

(2) = (9) for metric spaces X and Y and arbitrary «. We now know from the results

of [StVo67] that this has limited applicability for metric spaces, because any metric

space without isolated points is the union of c or fewer nowhere dense sets (also see

[Bg77] and [KuSz77]). It follows that if X and Y are metric and w(Y) is greater than

or equal to c, then ( X, Y ) will be BP only if the set of isolated points of X is dense

in X. (Such spaces will be termed "trivial".) In this case, (X, Z) will be BP for every

space Z. For topological spaces X, the Blumberg property is strictly stronger than

the Baire property. The examples in [Le73] and [We77] satisfy (1) for « = u and

therefore for every infinite «, but do not satisfy (7) for « = w, and therefore do not

satisfy (7) for any infinite «. (1), (2), and (3) were shown to be equivalent for

arbitrary « in [Wh74], and (2), (4), and (5) were shown to be the same for arbitrary «

in [Sz77], where it was also shown that (6) and (7) are the same for « = w, that (7)

and (8) are the same for arbitrary «, and that topological spaces with property (1)

but without isolated points exist for arbitrary regular cardinals « (in contrast to the

metric case). In particular, it was shown that if « is a regular cardinal, then B", with

the "box" topology, satisfies (2). The question of whether nontrivial spaces with

property (7) exist for large cardinals is still unsettled without imposition of extra set

theoretic assumptions. It follows from [Sz77] and GCH that such will exist, but it is

not known in ZFC if (Bn, B") is BP for arbitrary «. It was shown in [Wh79] that (9)

and (10) are equivalent for « = a, and the question was raised as to whether (6)

implies (8) for « = w. This question was settled in the affirmative in [PiSz84], thus

establishing the equivalence of (6) through (10) for « = w. The arguments for

Theorem 1 and Corollary 2 of [PiSz84] carry over to arbitrary «. So to summarize,

we have

Theorem 1. For topological spaces X and arbitrary cardinals n, (1) through (5) are

equivalent and (1) through (10) are equivalent and imply (1) through (5). For « = w,

(6) and (1) are equivalent.

2. Co-Blumberg spaces. We now begin our study of the relationships between

co-Blumberg spaces Y and separability properties defined in terms of the weight,

w(Y), of y and related parameters such as the "spread", s(Y), of Y, which is the

supremum of the cardinalities of discrete subsets of Y.

Theorem 2.w(Y)^cù ^ Y co-Blumberg -CH -» s(Y) g u.

Proof. The first implication follows from the equivalence of (6) and (9) for

« = w. The second implication comes as follows. Under CH, if s(Y) > u, it follows

that there is a discrete subset £ of y with cardinality the same as that of 7?. Then, if

/ is a 1-1 mapping of 7? onto E, there could be no restriction of / to a dense subset

of R.

Consider the following parameters associated with a space Y. The "density

character", d(Y), of Y is the minimum cardinality of a dense subset of Y. The

"cellularity", c(Y), of  Y is the supremum of the cardinalities of collections of
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disjoint open subsets of Y. It is well known (see [En68, Co71, or Ju71]) that

d(Y)£ co

/ \

(I)     w(Y)^u     9*     both £? either     <£     c(y)^u,

\ /

s{Y) g co

where "both" means that both d(Y) <; <o and ^(y) ^ w hold, and "either" means

that at least one holds. The so-called Sorgenfrey line 5 (Example 51 of [StSe78]),

which consists of the reals topologized by the basis of half-open intervals [a, b),

satisfies "both" but not w(Y) ¿ a. The product S2 (Example 84 of [StSe78])

satisfies d(Y) ^ w but not s(Y) <: <o. The reals with the "countable complement

extension topology" (Example 63 of [StSe78]), in which a set is open if and only if it

is of the form U\C where U is open in the Euclidean topology and C is countable,

satisfies s(Y) <; <o but not d(Y) 5; u. Finally, the so-called "uncountable Fort

space" (Example 24 of [StSe78]) satisfies c(Y) ^ « but not "either".

We now show that one cannot improve on Theorem 2 in trying to fit the

co-Blumberg property into the above diagram (I) of implications.

Example 1. "both" +■> co-Blumberg.

Proof. The Sorgenfrey line, S, satisfies "both" but is not co-Blumberg. To see

this, consider the identity function /: R -* S, and suppose D is a dense subset of R

such that f\ D is continuous. Then, if x g D, every neighborhood of x contains an

element y of D to the left of x, and f(y) will not be in [f(x), f(x) + 1). f\D

cannot be continuous.

Example 2. co-Blumberg ■** w(Y) <, w.

Proof. One could use 7? with the "co-finite" topology here (Example 19 of

[StSe78]), but a better example is the "Arens-Fort" space (Example 26 of [StSe78]).

This is a countable Hausdorff space which is not first countable,and therefore fails

to satisfy w(Y) <: u>. Since y is a countable space, it follows from the equivalence of

(3) and (6) for metric X that Y is co-Blumberg.

Example 2 is described in ZFC. We will see in Example 4 that it follows from CH

that co-Blumberg +>"both". First we point out that the CH assumption cannot be

dropped from the second implication of Theorem 2.

Example 3. (MA + not CH) co-Blumberg ■** c(Y) ^ w.

Proof. Assume (MA + not CH) and let Y = disc(ß). y obviously fails to satisfy

c(Y) ^ u. Since MA implies (1) for X = R and « = ß, it follows from the

equivalence of (1) and (4) that Y is co-Blumberg.

Example 4. (CH) co-Blumberg -» d(Y) <; w.

Proof. This example must be nonseparable but must have countable spread. Most

of the 38 nonseparable examples of [StSe78] have uncountable spread. We state with

some certainty that none of the other nonseparable examples of [StSe78] will suffice

here. In particular, the reals, E, with the "countable complement extension topol-

ogy" (Example 63 of [StSe78]) is not co-Blumberg. To see this, let /: 7? -» E be the

identity function. If there is a dense subset D of R such that /ID is continuous,
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there is a countable such D. But then, if x g D, f(x) is an isolated point in f(D)

with the relative topology of E. It follows that f\D cannot be continuous.

A modification of this example which can be found as Example 6.3 of [Ju71] will

serve here. Let Z denote the reals and -< denote a well-ordering of Z which has

countable initial segments. As a basis for the topology T of Z, take sets of the form

Ux, where U is open in the Euclidean topology, x G U, and Ux consists of the U

minus the elements of U which precede x in the ordering. It is easy to see that Z

fails to satisfy d(Y) <; w. The proof that Z is co-Blumberg is rather involved, so we

state this as a separate theorem.

Theorem 3. (CH) Z is co-Blumberg.

Proof. Let /: R -» Z, and let U denote the Euclidean topology for 7?. We say

that M ç R is "categorically dense" in an open set Q g U if M n Q' is second

category for every open Q' ç Q. Assume there is an open set Q g U and an x ^ Q

such that f~l(f(x)) n Q is categorically dense in Q. Well order such sets Q as

{£?a}a<s2' and for each a, let xa be such an x that goes with Qa. Now, for each a

such that Wa = Qa\C\(Uß<aQß) is nonempty, let Ea=r\f(xa)) n fF„. Note

that 7>! = Ua<aEa is dense in the open set W = Ua<aWa, and f\Dx is continuous

regardless of which topology is imposed on the range space Z. It should be noticed

that it is the case that if M is a second category subset of 7? \ C\(W), then f(M) is

uncountable.

Now, let Q = R\C\(W). We will make use of the following well-known tool

which is used in proving the standard Blumberg's Theorem.

Lemma. (LI): If A is categorically dense in the open set Q, there exist an x G A and

a subset C of A, also categorically dense in Q and containing x, such that f\C is

continuous at x (where the topology on the range space is U); in fact, the set of such x

is also categorically dense in Q.

See [Bn71] for a proof of this assertion. Let {75,, B2,...} be a countable basis for

the i/-topology relativized to Q. Now, proceed as in the usual proof of Blumberg's

Theorem. Let Ax = Q, and let xx and A2 be the x and C of (LI), with A = Ax,

where xx is chosen to be in Bx. Let x2 and A3, be the x and C of (LI), with

A = A2, where x2 is chosen to be in B2 and x2 is chosen so that f(x2) is a successor

of f(xx) in the ordering < . The steps taken in the first paragraph of this proof make

this possible. Continue this process, making sure that xn is a chosen so that f(xn) is

a successor of f(xx),f(x2),..., and f(x„_x) for each «. The set D2 = [xx,x2,...}

is dense in Q, and f\D2 is continuous even in the restriction of the topology T to the

range R of f\D2. This is because for each «, an open set in this restricted topology

containing f(x„) is the restriction of an open set in the Euclidean topology to this

range minus a finite set. Since f\D2 is clearly continuous when the topology is the

Euclidean one on both domain and range, the result follows. Dx U D2 is the

required set, and the theorem is proved.

We now present some open problems related to the theorems and examples of this

section.
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Problem 1. Avoid the (CH) assumption in Example 4 or show that it is not

possible to avoid this assumption.

Problem 2. It is clear from Theorem 2 and the equivalence of the conditions of (I)

in the metric case that a metric space is co-Blumberg if and (under CH) only if it is

separable. Thus, Examples 1, 2, and 4 are nonmetrizable (indeed, Example 2 is not

first countable and Example 4 is not regular). Might there be topological conditions

to be imposed on Y which are not strong enough to make the conditions of (I)

equivalent but which would be strong enough to make one of the implications

co-Blumberg -» w(y) g co, co-Blumberg -* d(Y) ^ u, or "both" -» co-Blumberg

hold?

Problem 3. Is (B", B") BP for every infinite cardinal «?

Problem 4. Find analogous result to those presented here but for cardinals « > w,

where "co-Blumberg" is replaced by "(75", Y) is BP". Of course, this would not be a

logical extension of the results of this section without the following.

Theorem 4. Y is co-Blumberg if and only if (75", Y) is BP.

Proof. Unlike showing the equivalence of (6) and (7) for « = w, both implictions

will require some argument. First assume Y is co-Blumberg and let /: 75" -* Y. The

set M of points of B" which are not "endpoints" can be thought of as being

imbedded by a homeomorphism « into R as the set N of irrationals. Let g: R -» Y

be defined as follows: g = f(h~x) on N. Let (r,, r2,...} be a listing of the rationals.

We can assume the space Y is infinite and that there exists a nonrepeating sequence

yx,y2,... of elements of Y which either has no convergent subsequence or else

converges to some element of Y not in the sequence. Define g on the rationals by

f(rn) = yn. Since Y is co-Blumberg, there exists a dense subset D of R such that g\D

is continuous. Because of the way g is defined on the rationals, it follows that

D n {rx,r2,...} is nowhere dense, so D n N is dense in 7?. h~l(D n N) is the

required dense subset of 75".
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