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MAPS WHICH PRESERVE ANR'S

TATSUHIKO YAGASAKI

Abstract. It is shown that maps preserve ANR's and LC "-property if they satisfy a

certain movability condition in the fiber shape theory. This generalizes the known

results of hereditary shape equivalences to a non cell-like case.

1. Introduction. Spaces are assumed to be metrizable and ANR's are ones for

metric spaces. Suppose /: X -» y is a proper onto map (f~x(B) is compact for each

compact 75 c Y) and X is an ANR. It is a long-standing problem to determine

conditions on / under which Y is an ANR. G. Kozlowski [K] proved that if / is a

hereditary shape equivalence then Y is an ANR. In [Yj] we introduced the notion of

movability for maps and proved [Yt, Theorem 1.2] that / is a hereditary shape

equivalence iff / is a CE-map and movable. Here an onto map /: X -» Y is said to

be movable provided for some (eq. any) ANR M containing lasa closed subset the

following holds:

(*) For each neighborhood Uoff~l = U{{y) Xf'l(y): y g Y} in Y X M there

exists a neighborhood V of f~l in U such that for each neighborhood W of /"' in V

there exists a homotopy h: V X [0,1] -» U such that h0 = id, hx(V) c W, pht= p

(0 < t < 1), where p: Y X M -» Y is the projection.

In addition, if we can take the homotpy « so that A,L.i = id (0 < t < 1), then we

say / is strongly movable.

The purpose of this note is to show that this movability assumption on / is

sufficient to ensure that Y is an ANR.

Theorem. Suppose f: X -* Y is a movable map.

(l)IfXis an ANR then so is Y.

(2) If Xis locally n-connected (LC) then so is Y.

In [K], it was also proved that a CE-map with an ANR domain is a hereditary

shape equivalence iff the range is an ANR. Our theorem, combined with [CD,,

Proposition 3.6], [Y„ Corollary 4.4], yields the following version.

Corollary. Suppose f: X -* Y is a proper onto map and X is a separable, locally

compact ANR. Then f is (strongly) movable iff Y is an ANR and f is completely

movable.
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As for the definition of the complete movability, refer to [CD,], and for the other

related topics, refer to [Y,].

Remark, (i) In the above corollary, the complete movability of / implies the

approximate homotopy lifting property for all «-cells (« ^ 0) [CD,, Theorem 3.3,

Proposition 3.6] and also that each fiber of / is an FANR. Therefore y is LC00 by

[CD2, Theorem 3.4]. However, in general, Y is not necessarily an ANR, because

there exists a CE (hence completely movable) map from the Hilbert cube to a

compactum which is not a shape equivalence [T].

(ii) In [Y2], it is shown that any movable map does not raise dimension. Therefore,

if /: X -+ Y is a completely movable map and X is an «-dimensional, locally

compact ANR, then Y is an ANR iff dim Y < « [Y2, Corollary 3.5].

2. Proof of Theorem. Suppose /: X -» Y is a movable map and M and N are

ANR's which contain X and Y as closed subsets respectively. Let p: N X M —> N

denote the projection and let p be a metric on N. For each neighborhood U of f'1

in N X M, we define U\Y= U n Y X M. First we have a lemma.

Lemma 1. Let W¡ (i ^ 0) be open neighborhoods off'1 in N X M. Then there exist

an open neighborhood U of /"'  in Y X M, open neighborhoods Vi (i > 0) of f'1 in

N X M and a map h:  V0 X [0, oo) -> W0 such that Vl+l C V¡, U = V\Y, «0 = id,

ph, = p, h(V, X [i, oo)) c Wl (i > 0).

Proof. We may assume Wi+X c W¡ (i > 0). Since / is movable, there exist open

neighborhoods U¡ (i > 0) of /"' in y X M and homotopies g': Ui X [0,1] -» U¡_x

(/ > 1) such that Ui+1 c U, c W\Y (i > 0), g'0 = id, g'x(U,) C Ul + X, pg', = p (i > 1,

0 < t < 1). Let U = Ux and define g: U X [0, oo) -» W0 by

giy,x,t) = g"igr1° ••• °gi(v,x),/-(«-l))G [/„_,

for (y, x) g Í7, « - 1 < ? < «, « > 1.

Take an open neighborhood F0 of /_1 in W0 with F0| y = U. Since M is an ANR,

using the Borsuk homotopy extension theorem or its proof [H, p. 117], inductively

we can find maps «": V0 X [0, «] -» W0 (n > 1) and open neighborhoods F„ (« > 1)

of U in F0 such that h" + '\^[0n]= h", h% = id, «"U^, = gl^^p F«l'= F
(0 < 5 < «), «"(F; X [/,«]) c IF, (0 < í < «). The desired map « is obtained by

piecing «" (« > 1) together.

Proof of Theorem (1). Since the ANR /_1 ~ X is closed in N X M, there exists

a retraction r: W^ -> /"' from some open neighborhood of /_1 in JV X M. Since

prLi = pL-i, we can find open neighborhoods W¡ (i > 1) of /_1 in W0 such that

p(pr(z), p(z)) < \/i (z g W¡, i ^ 1). Applying Lemma 1 to W¡ (i > 0), we obtain

U, V, (i > 0) and « as in Lemma 1.

Let y0 g y Take a point x0 g /_1(_y0) and an open neighborhood K of y0 in iV

such that K X {x0} c F0. We will show that there exists a map /c: 7C -> Y such that

¿|/fny= id^-n Y. Then AT n y is an ANR neighborhood of y0 in Y since fc|t-i(irny)

is a retraction from an ANR k~x(K n Y) onto K n Y. This implies that y is a local

ANR, hence an ANR [H, p. 68].
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Define a map s: K -* V0 by s(y) = (y, x0) (y g K). Since s(K n Y) c U C F,.

(/ > 0), there exist closed neighborhoods Kj (i > 0) of K n y in 7C such that

7i0 = Tí, Ki+X c Int Tí,, FlTÍ,. = K n Y and s(K,) c F, (j > 1). Take a function A:

K - Y -> [0, oo) with A(7v, - y) c [i, oo) and define k: K -> Y by

./ v    /7. j g Tiny

n>,j   l/^ííí^.M^)),   ^G7v-y.

If y g AT, - y / > 1, then h(s(y), X(y)) G IF, and by the choice of W„ p(k(y), y)

< \/i. The continuity of k follows from this observation. This completes the proof.

We proceed to the proof of Theorem (2) and assume f~l ~ X is LC". If °U is an

open cover of /_1 in N X M, then two maps g, g': P —> f~l are said to be ^-near

if for each x g P there exists U g fy such that g(x), g'(x) g U. The next lemma

follows from [H, p. 156, Theorem 4.1] and will play the same role as the retraction r:

W0 —» / " ' in the preceding proof.

Lemma 2. Let aUj (i > 0) be a sequence of open coverings of f~x in N X M. Then

there exist open neighborhoods W¡ (/' 3* 0) of f'1 in N X M such that if P = U{F;:

i > 0} is an (n + \)-dimensional locally compact polyhedron, P, is a compact subpoly-

hedron of P, Pi c IntP, + 1 (i > 0) and g: P -* W0 is a map with g(P¡ - IntP,^,) c

Wl (i > 0), then there exists a map g': P —> f'x such that g and g' are ^¿¡-near on

P,■- IntF, _! for i > 0.

Proof of Theorem (2). To see Y is LC", let y0 g Y and let L0 be any

neighborhood of y0 in Y. Take open neighborhoods K0, Kx of y0 in N such that

K0n y = L0, Cl Kx c K0 (Cl Kx is the closure of Kx in N).

For each / > 1 take an open covering Ql, of N X M which refines <%íü = {(N —

C\KX) X M, K0X M) and such that for each Ui g % diam p(Ut) < \/i. There

exist open neighborhoods W¡ (i > 0) of f~l in N X M as in Lemma 2. Then there

exist U,Vi (i > 0) and « as in Lemma 1. Take a point x0 ^f~l(y0) and open

neighborhoods 7i3 c 7v2 of y0 in Kx such that K2 X {x0} c F0 and the inclusion

7i3 c Tí2 is nullhomotopic (note that the ANR N is locally contractible).

Let L = K3 n y We will show that any map a: Sk -* L from the Ac-sphere Sk

(0 < A: < «) has an extension /?: 75* + 1 -* L0 over the (k + l)-ball 75* + 1.

Since a is nullhomotopic in K2, a extends to a map y: 75*+ 1 -* K2. Define s:

Bk + l -> F0 by s(z) = (y(z),x0), z G Bk + 1. Since i(S*) ci/c^(i> 0), there

exist compact subpolyhedra P, (/' > 0) of 75': + 1 (the interior of Bk+l) such that

Bk + 1 = UP,, J> c IntP, + 1, s(Bk + 1 - IntF,) c Vi + X (i > 0). Take a function A:

75A + 1 -» [0, oo) such that A(75* + 1 - IntF,)c [/ + 1, oo) (/ > 0). Define g: Bk + 1 -*

W0 by g(z) = h(s(z),X(z)). Then g(Pi - IntF,..,) c Wt (i > 0). By the choice of

W, (i > 0), we have a map g': Bk + 1 -> /_1 such that g and g' are ^,-near on

P, - IntP,_, (< > 0). Note that pg = y, pg'(Bk + l) c L0, p(pg'(*),Y(*)) < V<

(z g F; - IntF,_l7 / ^ 1). Finally define the map ß: Bk + l -» L0 by /3|s< = a,

ß|ß* + 1 = F&- The continuity of ß follows from the above observation. This com-

pletes the proof.



692 tatsuhiko yagasaki

References

[A] F. D. Ancel, The role of countable dimensionality in the theory of cell-like relations. Trans. Amer.

Math. Soc. 287 (1985), 1-40.

[CD, ] D. S. Coram and P. F. Duvall, Approximate fibrations and a movability condition for maps. Pacific

J. Math. 72(1977), 41-56.

[CD2]_, Local n-connectivity and approximate lifting. Topology Appl. 13 (1982), 225-228.

[H] S. T. Hu, Theory of retracts, Wayne State Univ. Press, Detroit, Mich., 1965.

[K] G. Kozlowski, Images of ANR's, preprint.

[T] J. L. Taylor, A counterexample in shape theory, Bull. Amer. Math. Soc. 81 (1975), 629-632.

[Y, ] T. Yagasaki, Movability of maps and shape fibrations, Glasnik Mat. (to appear).

[Y2]_Movability of maps and shape fibrations. II, Tsukuba J. Math. 9 (1985), 279-287.

Institute of Mathematics, University of Tsukuba, Sakura- mura, Ibaraki, 305, Japan


