MAPS WHICH PRESERVE ANR'S

TATSUHIKO YAGASAKI

ABSTRACT. It is shown that maps preserve ANR's and LC''-property if they satisfy a certain movability condition in the fiber shape theory. This generalizes the known results of hereditary shape equivalences to a non cell-like case.

- 1. Introduction. Spaces are assumed to be metrizable and ANR's are ones for metric spaces. Suppose $f: X \to Y$ is a proper onto map $(f^{-1}(B))$ is compact for each compact $B \subset Y$) and X is an ANR. It is a long-standing problem to determine conditions on f under which Y is an ANR. G. Kozlowski [K] proved that if f is a hereditary shape equivalence then Y is an ANR. In $[Y_1]$ we introduced the notion of movability for maps and proved $[Y_1]$, Theorem 1.2] that f is a hereditary shape equivalence iff f is a CE-map and movable. Here an onto map $f: X \to Y$ is said to be movable provided for some (eq. any) ANR f containing f as a closed subset the following holds:
- (*) For each neighborhood U of $f^{-1} = \bigcup \{\{y\} \times f^{-1}(y): y \in Y\}$ in $Y \times M$ there exists a neighborhood V of f^{-1} in U such that for each neighborhood W of f^{-1} in V there exists a homotopy $h: V \times [0,1] \to U$ such that $h_0 = \mathrm{id}$, $h_1(V) \subset W$, $ph_t = p$ $(0 \le t \le 1)$, where $p: Y \times M \to Y$ is the projection.

In addition, if we can take the homotpy h so that $h_t|_{f^{-1}} = \mathrm{id} \ (0 \le t \le 1)$, then we say f is *strongly* movable.

The purpose of this note is to show that this movability assumption on f is sufficient to ensure that Y is an ANR.

THEOREM. Suppose $f: X \to Y$ is a movable map.

- (1) If X is an ANR then so is Y.
- (2) If X is locally n-connected (LC^n) then so is Y.

In [K], it was also proved that a CE-map with an ANR domain is a hereditary shape equivalence iff the range is an ANR. Our theorem, combined with [CD₁, Proposition 3.6], [Y₁, Corollary 4.4], yields the following version.

COROLLARY. Suppose $f: X \to Y$ is a proper onto map and X is a separable, locally compact ANR. Then f is (strongly) movable iff Y is an ANR and f is completely movable.

Received by the editors April 6, 1984 and, in revised form, April 2, 1985.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 54C55, 54C56.

Key words and phrases. ANR, LC", movability, complete movability, hereditary shape equivalence, approximate fibration.

As for the definition of the complete movability, refer to $[\mathbf{CD_1}]$, and for the other related topics, refer to $[\mathbf{Y_1}]$.

- REMARK. (i) In the above corollary, the complete movability of f implies the approximate homotopy lifting property for all n-cells ($n \ge 0$) [CD₁, Theorem 3.3, Proposition 3.6] and also that each fiber of f is an FANR. Therefore Y is LC^{∞} by [CD₂, Theorem 3.4]. However, in general, Y is not necessarily an ANR, because there exists a CE (hence completely movable) map from the Hilbert cube to a compactum which is not a shape equivalence [T].
- (ii) In $[Y_2]$, it is shown that any movable map does *not* raise dimension. Therefore, if $f: X \to Y$ is a completely movable map and X is an n-dimensional, locally compact ANR, then Y is an ANR iff dim $Y \le n$ $[Y_2, Corollary 3.5]$.
- **2. Proof of Theorem.** Suppose $f: X \to Y$ is a movable map and M and N are ANR's which contain X and Y as closed subsets respectively. Let $p: N \times M \to N$ denote the projection and let ρ be a metric on N. For each neighborhood U of f^{-1} in $N \times M$, we define $U|_{Y} = U \cap Y \times M$. First we have a lemma.
- LEMMA 1. Let W_i $(i \ge 0)$ be open neighborhoods of f^{-1} in $N \times M$. Then there exist an open neighborhood U of f^{-1} in $Y \times M$, open neighborhoods V_i $(i \ge 0)$ of f^{-1} in $N \times M$ and a map $h: V_0 \times [0, \infty) \to W_0$ such that $V_{i+1} \subset V_i$, $U = V_i|_Y$, $h_0 = \mathrm{id}$, $ph_i = p$, $h(V_i \times [i, \infty)) \subset W_i$ $(i \ge 0)$.

PROOF. We may assume $W_{i+1} \subset W_i$ $(i \ge 0)$. Since f is movable, there exist open neighborhoods U_i $(i \ge 0)$ of f^{-1} in $Y \times M$ and homotopies g^i : $U_i \times [0,1] \to U_{i-1}$ $(i \ge 1)$ such that $U_{i+1} \subset U_i \subset W_i|_Y$ $(i \ge 0)$, $g_0^i = \operatorname{id}$, $g_1^i(U_i) \subset U_{i+1}$, $pg_t^i = p$ $(i \ge 1, 0 \le t \le 1)$. Let $U = U_1$ and define $g: U \times [0, \infty) \to W_0$ by

$$g(y, x, t) = g^{n}(g_{1}^{n-1} \circ \cdots \circ g_{1}^{1}(y, x), t - (n-1)) \in U_{n-1}$$

for $(y, x) \in U, n-1 \le t \le n, n \ge 1$.

Take an open neighborhood V_0 of f^{-1} in W_0 with $V_0\big|_Y=U$. Since M is an ANR, using the Borsuk homotopy extension theorem or its proof [H, p. 117], inductively we can find maps h^n : $V_0 \times [0, n] \to W_0$ $(n \ge 1)$ and open neighborhoods V_n $(n \ge 1)$ of U in V_0 such that $h^{n+1}\big|_{V_0 \times [0,n]} = h^n$, $h^n_0 = \mathrm{id}$, $h^n\big|_{U \times [0,n]} = g\big|_{U \times [0,n]}$, $ph^n_s = p$ $(0 \le s \le n)$, $h^n(V_i \times [i,n]) \subset W_i$ $(0 \le i \le n)$. The desired map h is obtained by piecing h^n $(n \ge 1)$ together.

PROOF OF THEOREM (1). Since the ANR $f^{-1} \approx X$ is closed in $N \times M$, there exists a retraction r: $W_0 \to f^{-1}$ from some open neighborhood of f^{-1} in $N \times M$. Since $pr|_{f^{-1}} = p|_{f^{-1}}$, we can find open neighborhoods W_i $(i \ge 1)$ of f^{-1} in W_0 such that $\rho(pr(z), p(z)) < 1/i$ $(z \in W_i, i \ge 1)$. Applying Lemma 1 to W_i $(i \ge 0)$, we obtain U, V_i $(i \ge 0)$ and h as in Lemma 1.

Let $y_0 \in Y$. Take a point $x_0 \in f^{-1}(y_0)$ and an open neighborhood K of y_0 in N such that $K \times \{x_0\} \subset V_0$. We will show that there exists a map $k: K \to Y$ such that $k \mid_{K \cap Y} = \mathrm{id}_{K \cap Y}$. Then $K \cap Y$ is an ANR neighborhood of y_0 in Y since $k \mid_{K^{-1}(K \cap Y)}$ is a retraction from an ANR $k^{-1}(K \cap Y)$ onto $K \cap Y$. This implies that Y is a local ANR, hence an ANR [H, p. 68].

Define a map $s: K \to V_0$ by $s(y) = (y, x_0)$ ($y \in K$). Since $s(K \cap Y) \subset U \subset V_i$ ($i \ge 0$), there exist closed neighborhoods K_i ($i \ge 0$) of $K \cap Y$ in K such that $K_0 = K$, $K_{i+1} \subset \text{Int } K_i$, $\bigcap K_i = K \cap Y$ and $s(K_i) \subset V_i$ ($i \ge 1$). Take a function λ : $K - Y \to [0, \infty)$ with $\lambda(K_i - Y) \subset [i, \infty)$ and define $k: K \to Y$ by

$$k(y) = \begin{cases} y, & y \in K \cap Y, \\ prh(s(y), \lambda(y)), & y \in K - Y. \end{cases}$$

If $y \in K_i - Y$, $i \ge 1$, then $h(s(y), \lambda(y)) \in W_i$ and by the choice of W_i , $\rho(k(y), y) < 1/i$. The continuity of k follows from this observation. This completes the proof.

We proceed to the proof of Theorem (2) and assume $f^{-1} \approx X$ is LCⁿ. If \mathscr{U} is an open cover of f^{-1} in $N \times M$, then two maps $g, g' : P \to f^{-1}$ are said to be \mathscr{U} -near if for each $x \in P$ there exists $U \in \mathscr{U}$ such that $g(x), g'(x) \in U$. The next lemma follows from [H, p. 156, Theorem 4.1] and will play the same role as the retraction $r : W_0 \to f^{-1}$ in the preceding proof.

LEMMA 2. Let \mathcal{U}_i $(i \ge 0)$ be a sequence of open coverings of f^{-1} in $N \times M$. Then there exist open neighborhoods W_i $(i \ge 0)$ of f^{-1} in $N \times M$ such that if $P = \bigcup \{P_i: i \ge 0\}$ is an (n+1)-dimensional locally compact polyhedron, P_i is a compact subpolyhedron of P, $P_i \subset \operatorname{Int} P_{i+1}$ $(i \ge 0)$ and $g: P \to W_0$ is a map with $g(P_i - \operatorname{Int} P_{i-1}) \subset W_i$ $(i \ge 0)$, then there exists a map $g': P \to f^{-1}$ such that g and g' are \mathcal{U}_i -near on $P_i - \operatorname{Int} P_{i-1}$ for $i \ge 0$.

PROOF OF THEOREM (2). To see Y is LC^n , let $y_0 \in Y$ and let L_0 be any neighborhood of y_0 in Y. Take open neighborhoods K_0 , K_1 of y_0 in N such that $K_0 \cap Y = L_0$, $Cl\ K_1 \subset K_0$ ($Cl\ K_1$ is the closure of K_1 in N).

For each $i \ge 1$ take an open covering \mathcal{U}_i of $N \times M$ which refines $\mathcal{U}_0 = \{(N - \operatorname{Cl} K_1) \times M, K_0 \times M\}$ and such that for each $U_i \in \mathcal{U}_i$, diam $p(U_i) < 1/i$. There exist open neighborhoods W_i ($i \ge 0$) of f^{-1} in $N \times M$ as in Lemma 2. Then there exist U, V_i ($i \ge 0$) and h as in Lemma 1. Take a point $x_0 \in f^{-1}(y_0)$ and open neighborhoods $K_3 \subset K_2$ of y_0 in K_1 such that $K_2 \times \{x_0\} \subset V_0$ and the inclusion $K_3 \subset K_2$ is nullhomotopic (note that the ANR N is locally contractible).

Let $L = K_3 \cap Y$. We will show that any map $\alpha: S^k \to L$ from the k-sphere S^k $(0 \le k \le n)$ has an extension $\beta: B^{k+1} \to L_0$ over the (k+1)-ball B^{k+1} .

REFERENCES

- [A] F. D. Ancel, The role of countable dimensionality in the theory of cell-like relations, Trans. Amer. Math. Soc. 287 (1985), 1-40.
- [CD₁] D. S. Coram and P. F. Duvall, Approximate fibrations and a movability condition for maps, Pacific J. Math. 72 (1977), 41-56.
 - [CD₂] _____, Local n-connectivity and approximate lifting, Topology Appl. 13 (1982), 225–228.
 - [H] S. T. Hu, Theory of retracts, Wayne State Univ. Press, Detroit, Mich., 1965.
 - [K] G. Kozlowski, Images of ANR's, preprint.
 - [T] J. L. Taylor, A counterexample in shape theory, Bull. Amer. Math. Soc. 81 (1975), 629-632.
 - [Y₁] T. Yagasaki, Movability of maps and shape fibrations, Glasnik Mat. (to appear).
 - [Y₂] _____, Movability of maps and shape fibrations. II, Tsukuba J. Math. 9 (1985), 279-287.

Institute of Mathematics, University of Tsukuba, Sakura - mura, Ibaraki, 305, Japan