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LOOP SPACES OF FINITE COMPLEXES
AT LARGE PRIMES
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ABSTRACT. Let X be a finite, simply connected CW complex with only a

finite number of nonzero rational homotopy groups. Localized away from a

certain finite set of primes, the loop space of X is shown to be homotopy

equivalent to a product of spheres and loop spaces of spheres. Applications to

the homotopy groups of X and the homological properties of QX are given.

Let X be a simply connected CW complex with a finite numer of cells. Define the

exponent of X at a prime p to be the least upper bound of the orders of p-primary

torsion elements in the homotopy groups, rrtX.

Is this exponent finite or not? The following conjecture, due to J. C. Moore [2],

asserts that the answer depends only on a certain rational homotopy invariant of

X.

CONJECTURE. Given X as above, the exponent of X at p is finite if and only if

the total rational homotopy rank, J2n rank(7r„X ® Q), is finite.    D

This conjecture was the starting point for the results in this paper. We prove

one direction of this conjecture for all but a finite number of primes. Our main

geometric result is the following.

THEOREM. Let X be a finite, 1-connected, CW complex whose total rational

homotopy rank is finite and nonzero. Then for almost all primes p, the loop space

ÜX is p-equivalent to a product of spheres and loop spaces of spheres; that is

nx ~p Us2171--1 x Uns2"'-1,     d
» i

Special cases of this result have been known for some time. A case in point is

the splitting

ÜS2n ~p S2""1 x fis4"-1,

valid for each odd prime p. The number of factors in such splittings is easily seen

to equal the total rational homotopy rank of X.

The sphere Sn is known to have a finite exponent at each prime. For p = 2 this is

due to I. M. James [4]; for odd primes it is due to H. Toda [5]. Consequently Moore's

exponent conjecture is true for all spaces and primes covered by our theorem. Here

are some other immediate algebraic consequences.
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COROLLARY.   Let X be as in the theorem. Then for almost all primes p,
(i) 77*(fLY;Z) has no p-torsion,

(ii) pth powers vanish in 77*(ÍLY; Z/p),
(iii) the Steenrod algebra acts trivially on 77*(fLY; Z/p).    D

It would be interesting to know the extent to which this corollary holds for loop

spaces of finite complexes of infinite rational homotopy rank. Property (ii), which

is equivalent to primitive generation of the homology Hopf algebra, does appear to

hold in general. Moreover if X is the suspension of a finite complex, then the loop

space of X has these properties for almost all primes.

On the other hand, we now know that the first property does not hold in general.

Recently, D. Anick [1] has constructed a finite complex K which dramatically illus-

trates the failure of (i) for general X. The example K has the form \j7 S2ö\J11 e4

and yet 77*(ÍÍ7Í, Z) has torsion of every possible order! Indeed for each positive

integer m it has torsion of order m in degree m + 1.

We thank Bill Dwyer and Steve Halperin for their help and guidance in the

subjects considered in this paper.

PROOF OF THE MAIN THEOREM. We shall consider not only finite complexes

but also those localizations of finite complexes in which only a finite number of

primes have been inverted. Our result adapts easily to this slightly more general

situation.

The proof uses induction on the total rational homotopy rank. The first case

(i.e., rank = 1) is easily settled because the only possibility here is that X c±p g2"-1

for almost all p.

In the induction step, assume that X is a 1-connected, finite localization of a

finite complex with rational rank n > 2. Take k to be the smallest integer such

that 7TfcX(gi Q 5¿ 0. The Hurewicz homomorphism is a rational isomorphism in this

dimension and so there is a nonzero homomorphism

/: HkiX;Z)^Q.

Let L C Q denote the image of /. The finiteness conditions on X imply that L is

a finite localization of the integers.

These homomorphisms determine cohomology classes in the usual manner and

hence give rise to the following diagram of maps into Eilenberg-Mac Lane spaces:

.K(L,k)

X l
X^-£-*K{Q,k).

Here the bottom map corresponds to the homomorphism of the same name men-

tioned earlier. The inclusion LcQ induces the corresponding vertical map.

Now assume that k is odd and consider the lifting problem:

,Sk

>''     Ï
X'' 9 , » K{L, k)

The vertical map j is chosen so as to induce an isomorphism on Hki—;L).  For

almost all primes p, this map will induce an equivalence at p through a range of
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dimensions that exceed that of X. Hence a lift h exists after at most a finite

localization. It is easy to check that this lift must be rationally essential. Indeed,

it induces a rational epimorphism onto 7tkSk.

We now convert this map h into a fibration and study its fiber:

F^X^Sk.

In order to apply the induction hypothesis to F, we need to show that this fiber

satisfies our finiteness requirements. By Halperin [3], F has the rational homotopy

type of a finite complex. Therefore, the question of finiteness can be resolved

by examining the torsion in H»iF;Z). To do this, we use the principal fibration

fiSfc —► F —> X, induced by h. The corresponding action QSk X F —> F gives
H*{F;7i) the structure of a module over the Pontryagin ring 77"»(fiSlfc; Z). Call

this ring 7? for the moment. We claim that as an Tt-module, 77«(F;Z) is finitely

generated.

To see this note that the spaces in this principal fibration are simply connected.

We can assume that they each have been localized away from the same finite set of

primes. This set can be taken large enough so that 77,(X;Z) may be assumed to

be torsion free.

In the Serre spectral sequence for this fibration, we then have

El^Hv{X;Z)®R.

Thus it follows from the finiteness of X that this 7£2-term is a finitely generated

7?-module. Now this ring 7?, being polynomial on a single generator, is noetherian.

Over such rings finite generation is inherited by submodules and quotients. Thus

every term, Er, in the spectral sequence is likewise finitely generated. Since X is

finite dimensional we have, of course, Er = E°° for r sufficiently large. Now 75°° is

the graded object of a complete filtration of Ht{F; Z) by 7?-modules. Consequently

the finite generation of 77*(T7; Z) follows from that of E°°.

The elements of finite order in 77* {F; Z) form an 7?-submodule, and as such, it

must be finitely generated. This implies that p-torsion can occur in 77» (T7; Z) for

at most a finite number of primes.

Localize F away from those torsion primes just considered. The result (in view

of Halperin's determination of the rational type) is the finite localization of a finite

complex.

Return now to the original fibration

F-*X±Sk.

We have shown that after a finite localization the fiber F satisfies our finiteness

requirements. We may also assume that there is a section (again, after a finite

localization if necessary). Having made these localizations we obtain the splitting

of loop spaces,

fix ~ QF x nsk.

The rational rank of F is one less than that of X and so QF splits as required by

the induction hypothesis. This completes the induction step when k is odd.
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The even case (say k = 2n) is easier; there we begin with the lifting problem

,»BU(n)

X''   9  ., K{L, 2n)

wherein the bottom line occurs just as before and the vertical map is induced by

the nth Chern class.

Let d denote the dimension of X. Localized at most primes (for example p > d),

the d-skeleton of BU{n) contains the d-skeleton of K {L, 2n) as a retract. Moreover,

the restriction of cn can be taken to be the retraction in question. Hence this lifting

problem has a solution h, after at most a finite localization. In addition, this lift h

induces a rational epimorphism on 7T2n( )•

Now consider the pullback diagram of fibrations:

g2n-i     __>        Sr2n_1

I I
E       -»    BUin-l)

l Ï
X       A       BU{n)

Apply 7T* ( ) ® Q to this diagram and observe that the rational rank of E is one less

than that of X. The finiteness of E is, of course, immediate.

A glance at the induced fibration ÜE —> fLY —► S2n~1 shows that it has a section

after at most a finite localization. With this accomplished we have

fiX-iLExS2""1.

Once again the induction hypothesis implies that ÜE splits are required and the

proof is complete.

Given a space X that satisfies the hypothesis of our theorem, let P{X) denote

the finite set of exceptional primes; that is, those primes p at which fiX does not

decompose in the manner described by our theorem. It would be interesting to

know more about this set. To seek a precise description of P{X) seems unrealistic;

indeed for X = S2n this is equivalent to the Hopf invariant one problem. It would

be more reasonable to look for upper bounds on P{X). Unfortunately our proof

does not shed much light on this problem. In particular, in the induction step for k

odd, the Noetherian argument gives no description of P(X), beyond its finiteness.

So consider instead the following three examples:

Xi = the product 5nx (Moore space),

X2 = the Lie group SU in),

X3 = the 2mn-skeleton of fiS2n+1.

All three spaces satisfy the hypothesis of our theorem. The first shows that

P{X) can contain the torsion primes in 77*(X;Z). The second shows that P(X)

can contain the torsion primes in the cokernel of the Hurewicz homomorphism.

In the third example, P(X¿) 3 [p|p < m] and hence depends in part upon the

dimension of X. Is it possible to obtain an upper bound for P(X) in terms of the

three ingredients just mentioned? If not, what else is needed?
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