
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 97, Number 1, May 1986

A NOTE ON ELEMENTARY OPERATORS
ON THE CALKIN ALGEBRA

JANKO GRAVNER

ABSTRACT. Various parts of the spectrum of elementary operators on the

Calkin algebra are characterised by means of the joint (Harte) spectra of n-

tuples of operators.

1. Introduction and notation. Let S be a complex Banach algebra with

identity 1. Then the left and right spectra of an n-tuple a G Bn are the following

subsets of C":

(0.1) a, (a) = l s G C", 1 £ ¿ B(a3 - s3)

and

(0.2) or(a) = i s € Cn, 1 ¿ ¿(o, - 8j)ß 1 ,

while the joint spectrum is the union

(0.3) o-j(a) =<Ti(fl)U(7r(a).

We call an n-tuple a G Bn commutative if ojüí — üíüj for i,j = 1,... ,n, and say

that it commutes with an m-tuple b G Bm if aibj = bjOi for each i and j. If a G Bn

and b G Bm are arbitrary tuples, and g G Poly^j+n is a p-tuple of polynomials in

n + m noncommuting variables, then the spectral mapping theorems of Harte can

be summarised as follows [11, Theorem 1.2]:

(0.4) goi(a,b) C oi(g(a,b)) and goy (a, b) C o-r(g(a,b)) for arbitrary (a,b) G
On+m.

(0.5) oi(g(a,b)) C (Ti(g(<Ti(a),6)) and ar(g(a,b)) C o-r(g(o-r(a),b)) if a G Bn

commutes with (a,b) G Bn+m;

(0.6) o~i(g(a,b)) = go-i(a,b) and or(g(a,b)) = gor(a,b) if(a,b) G Bn+m is com-

mutative. In particular, if m = n we shall write

(0.7) a • b = ai&i + • • • + a„6„ G S

and also define operators Lg/. B —> Bn and Äfe: B —* Bn by setting, for each x G S,

(0.8) La(x) = ax = (aix,... ,anx)    and   Rb(x) = xb = (xb\,... ,xbn).
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In particular, in the algebra Z(B) of all bounded operators on S,

(0.9) La- Rb — Rb- La: x h-> ax • b — a ■ xb = aixbi + ■ ■ ■ + anxbn

is the elementary operator on H, induced by the n-tuples a and 6. Throughout this

paper, H will denote a fixed, infinite-dimensional Hilbert space. The Calkin algebra

Z(H/K(H) will be denoted by A, while tt will be the quotient map from Z(H) onto
A. It is a purpose of this note to determine the spectrum of an elementary operator

La ■ Rb when a G An and b G An and either a or b is commutative.

Spectral properties of elementary operators on Z(H) have been discussed by

Harte [11, Theorem 3.5]: If B = Z(H) and a G Bn is commutative, then

(0.10) oi(La -Rb) = o-r(o-i(a) ■ b) = \J{crr(s-b), sG<r,(a)},

(0.11) Or(La-Rb)=o-i(or(a)-b) = [J{o-i(s-b), sGo-r(a)}.

Our first result shows that (0.10) and (0.11) continue to hold when Z(H) is replaced

by A, and we shall also show that the left and the right spectra of the restriction

of La ■ Rb to the von Neumann-Schatten p-class CP(H) C Z(H) are the same as

the spectrum of L„ • Rb on Z(H). We should remark that both these situations

have been studied by Fialkow (see [4-6], which include some further references)

and Carillo and Hernandez [2] under the more restrictive condition that a and b

are both commutative. Some special cases of our results can also be found in [15].

We recall that approximate point and defect spectrum of an operator T acting on

a Banach space are, respectively, the sets

(0.12) o-n(T) = {A G C, T - X is not bounded below}

and

(0.13) °~6(T) — {X GC, T — X is not surjective}.

We will also prove that for elementary operators on Z(H) and on A, the left spec-

trum is equal to the approximate point spectrum and the right spectrum is equal

to the defect spectrum.

1. The spectra. . We begin with a preliminary result, originally due to Wolf,

which is given by Dash [3] and by Fillmore, Stampfli and Williams [7].

LEMMA 1. If a G An is a commutative n-tuple of elements in the Calkin algebra,

then

(1.1) s G tri (a) if and only if (a — s)tt(P) = 0 for a noncompact projection

PgZ(H), and
(1.2) s G err(a) if and only if Tr(P)(a - s) = 0 for a noncompact projection

P G Z(H). In particular, the left and the right spectra of a consist, respectively, of

the left point spectrum and the right point spectrum.    D

THEOREM 1. Let La ■ Rb be an elementary operator on A. If a G An is com-

mutative, then the following spectral equalities are valid:

(1.3) ai(La-Rb) =o-r(oi(a) -b)

and

(1.4) or(La ■ Rb) = o-i((jr(a) ■ b);
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and ifb is commutative, then

(1.5) <7i{La-Rb) = o-i(o-r(b.)-a)

and

(1.6) oT(La ■ Rb) = o-r(cri(b) • a).

Further, in both cases cri(La • Rb) consists of eigenvalues X G crp(La ■ Rb) with

infinite-dimensional Ker(La • Rb — A), and for each X G oT(La ■ Rb),

codim Im(La • Rb — X) ~ = dim A/Im(La • Rb — X) ~ = oo.

PROOF. We will restrict ourselves to the case of commutative a; the case of

commutative b then follows by taking adjoints. The two inclusions ai (La ■ Rb) C

o-r(oi(a) ■ b) and or(La • Rb) C oi(or(a) ■ b) follow from (0.5).

We can clearly assume that the range of P, obtained from Lemma 1, is separa-

ble. Throughout this proof, P and Q will be projections with separable infinite-

dimensional ranges, {Mi,i = 1,2,...} will be an orthogonal family of infinite-

dimensional closed subspaces of ImP, and í/¿ are partial isometries with initial

spaces Im Q and final spaces M¿.

Take s G ai (a) and A G or (s ■ b) By the previous lemma, there exist P and Q

such that (a — s)tt(P) — 0 and Tr(Q)(s-b — X) = 0. It is easy to see that the elements

tt(PUíQ) are linearly independent in A. But

(La ■ Rb - X)tt(PU%Q) = (a - s)ir(PUiQ) ■ b + tt(PUíQ)(s ■ b - A) = 0,

proving the assertions about the left spectrum.

Now, take s G or(a) and A G cri(s-b) and choose P and Q such that 7r(P)(o—s) =

0 and (s ■ b — X)n(Q) = 0. For every x G A denote by [x] the coset of x in

A/lm(La ■ Rb — X)~. Choose any scalars ti,...,tm and assume that

m

£ [tjir(PUjQ)} = 0.

3=1

In this case

0=|[5>*(Pl/,-Q)]|

= inf   ax -b-Xx- >J tjTr(PUjQ)

w(P)ax ■ brr(Q) - Xtt(P)xtt(Q) - ^ tjTr(PUjQÛ

= inf \\Tr(P)(a - s)x ■ brr(Q) + tt(P)x(s ■ b - A)tt(Q) - V t3Tr(PUjQ)

= \\Y,tMPUjQ)

showing that XwLi tjic(PUjQ) = 0. Since tt(PUjQ) are linearly independent, it

follows that ii = ■ • ■ = tm — 0. The cosets [tt(PU3Q)\ are therefore linearly

independent and codimIm(La ■ Rb — X)~ — oo.    D

> inf
xeA
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COROLLARY 1. An elementary operator La ■ Rb on A with a commutative is

semi-Fredholm if and only if it is invertible from one side, and Fredholm if and only

if it is invertible; thus cre(La ■ Rb) — o (La • Rb)-    d

Theorem 1 already gives a formula for the spectrum of an elementary operator

on the Calkin algebra. But we wish to prove another, more elegant, formula. To

this end we have to clarify the situation for elementary operators on Z(H) first. In

our proof of the next theorem, we use techniques very similar to those in [11] and

[12], so we will be brief.

Let La ■ Rb be an elementary operator on Z(H). By La we denote the n-tuple

of restrictions Lai\Cp(H), i — l,...,n, and Rp has an analogous meaning. Thus

La ■ Rp is the restriction of La • Rb to the von Neumann-Schatten p-class CP(H).

THEOREM 2.   If a G Z(H)n is commutative and b G Z(H)n is arbitrary, then

(1.7) oi(Ll ■ R¡) = °i(La ■ Rb) = o-AW ■ Rb) = oT(oi(a) ■ b),

(1.8) or(Ll ■ R¡) = or(La ■ Rb) = o-6(La ■ Rb) = o-x(o-r(a) ■ b)

and

(1.9) o(Ll ■ Rpk) = o(La ■ Rb) = o(oj(a) ■ b) = \J{o(s -b), s G o3(a)}.

If instead, b G Z(H)n is commutative, then

(1.10) oi(Ll ■ RÇ) = o-i(La ■ Rb) = o-ALa ■ Rb) = o-i(or(b) ■ a),

(1.11) Or(LPa ■ RPb) = (Jr(La ■ Rb) = O0(W ■ Rb) = *r M&) " <k)

and

(1.12) o(Ll ■ Rph) = o(La ■ Rb) = o(o3(b) ■ a).

PROOF. If a is commutative, the inclusions

<7i(Lo ■ Rb) C <7r(<Ti(a) • b)    and    or(La ■ Rb) C ai(or(a) ■ b)

again follow from (0.5). To prove that or(oi(a) -b) C on(La- Rb), take an s G ai (a)

and a A G ay (s • a). Then there exist sequences (xfc) and (yk) of unit vectors

such that (a¿ - s%)xk —>k 0, for i = 1,..., n and (s ■ a - X)yk ~^>k 0- The operators

Zk — Xk (8> 2/fe have norm 1, and it is easy to see that (La • Rb - X)Zk —>*¡ 0. Thus

A G aw(La • Rb)-

The same argument, of course, works for an operator Lpa ■ Rp. Hence (1.7) holds.

We omit the proof of (1.10).

The assertions concerning the right spectra, (1.8) and (1.11), can now be proved

by exploiting the following connections between the operators Lva ■ Rp and their

Banach space adjoints: (L? ■ Rp)' = (Ll ■ R%), where l/p + I/o = 1 and 1 < p < oo

(if we set Coo(H) = K(H)j~and~(Ll ■ Ri)' = La ■ Rb- To prove (1.9) and (1.11), we

will first see that if a is commutative then ai(ai(a) • b) C a(L„ • Rb). To this end,

take an s G ai (a) and a A G ai (s-a). In this case we can choose sequences (xk) and

(yk) of unit vectors such that (at —s3)xk —>fc0 for i = l,...,n and (s-b — X)yk —>k 0-

Define operators Xk = Xfc ® Xfc, Yk = yk ® yk and Zk = Xk <8> yk-  Assume that
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La ■ Rb — A is invertible. Then there exists a bounded sequence of operators (Uk)

such that (La ■ Rb — X)Uk — XkZk- Because the n-tuple a is commutative,

(La • Rb - A)((a, - sl)Uk) = (a, - st)(La ■ Rb - X)Uk = (a¿ - Si)XkZk ->0
— —        - k

for every i. Hence (a¿ — s¿)<7fc —»fe 0 for every i, and

l = [\XkZkYk\\ = [[((La-Rb-X)Uk)Yk\[
n

< £ lite - BiWkW linil INI + \\Uk\\ [[(s ■ b - x)Yk\[,
i=l

but this tends to zero as k increases, a contradiction. An analogous argument shows

that o-r(o~r(k) ■ a) C a(La ■ Rb) in the case of commutative b. Again both inclusions

remain valid if we replace L„ ■ #6 by Lp ■ Rp, where p is arbitrary.

Now if again o is commutative, s G ar(a) and A G ar(s ■ b), then, by the previous

discussion (with the roles of a and b interchanged), A G a(L¿ ■ Ra. But a(L¿ -i?*) =

o-((L\ ■ Ri)') = <j(La ■ Rb). Thus A G <r(L„ • Rb) and or(or(a) ~b) C a(L„ • Rb). A

similar duality argument proves the same for the operators L£ • Rp and concludes

the proof of (1.9). We again omit the proof for commutative b.    D

In the sequel we will use the well-known noncommutative Weyl-von Neumann

theorem of Voiculescu [14, Theorem 1.3]. We recall that two representations p and

r of separable C*-algebra B on separable Hilbert spaces Hp and HT are said to be

approximately equivalent (p ~ r) if there exists a sequence Un:Hp —> HT of unitary

operators such that, for each A in S,

(1.13) Unp(A)U* — t(A) are compact operators for every n and their norms tend

to zero as n increases.

An equivalent formulation of Voiculescu's theorem (see [1, p. 339]) is then stated

in the following lemma.

LEMMA 2. Let B be a separable C* -algebra of operators on a separable Hilbert

space, p a nondegenerate representation of B on a separable Hilbert space which

annihilates all compact operators from B, and id the identity representation of B.

Then id 6 p ~ id.    D

Henceforth we will assume that if ax and t>¿ are elements in the Calkin algebra

A then Ai and jB¿ are operators on H for which 7r(A,) = a¿ and tt(Bí) = bi or, in

short, tt(A) — a and tt(B) = b.

The argument in the proof of the following proposition is partly similar to that

in [8, Theorem 3].

PROPOSITION. Assume the Hilbert space H to be separable. Take arbitrary

n-tuples a, b G An. Let B be an arbitrary separable C*-subalgebra Z(H), which

includes operators A\,..., An and Bi,...,Bn and the identity I. Let p be a faith-

ful representation of the separable C*-algebra tt(B) C A on a separable Hilbert space

Hp.   Denote by £ the elementary operator on Z(HP) which maps Z G Z(HP) into

S¿l=i/í,7r(J4¿)^P7r(-B¿)-  Then

(1.14) If La ■ Rb is bounded below, then Í is bounded below.

(1.15) If La ■ Rb is onto, then Im<? is dense in Z(HP).

(1.16) If La ■ Rb is invertible, then £ is invertible.
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PROOF. Let the representation p°° be the direct sum of countably many copies

of p. Then p00 maps into Z(HS°), H^ being the direct sum of infinitely many

copies of Hp. If T G Z(HP), of course T°° G £(#|°) denotes the infinite direct

sum T © T © • • •. By the previous lemma id ~ id © p°°. In particular, there

exists a unitary operator U: H © H™ —* H such that U*AiU - Ai © p°°7r(A¿) and

U*BiU — Bi® p°°tt(Bí) are compact for t = 1,..., n.

Assume first that La ■ Rb is bounded below. Thus, if (Xk) is a sequence of

operators on H such that ir(AXk ■ B) —>k 0, then Tr(Xk)^>k 0. Choose a sequence

(Zk) of operators on Hp for which £Zfc —>k 0. Then clearly 0 © (£Zk)°° —>fc 0. But

n

0 © (£Zfc)°° = ^2(Ai © p°°ir(i4i))(0 © Z^)(B% © p°°7r(ßt))
í=i

n

= Y, U*AiU(0 © ZDlTBiU + Kk,
i=\

where Kk is a compact operator on H, which depends on Zk- Thus

7r(a7r([/(0©Z£°)[/*)-6H0.
fc

From the fact that T h-> 7r(C/(0 © T°°)Í7*) is an injective *-homomorphism from

Z(Hp) into A , it follows that [\tt(U(<d® Z^)U*)\\ = ||Zfc||. From this and from the
assumed boundedness below of La • Rb, it follows that Zk —»fc 0. Hence £ is bounded

below.

To prove (1.15) assume that La • Rb is surjective, which means that for every

Y G Z(H) there exists an X G Z(H) such that AX-B-Y G K(H). Thus, for every

operator W G Z(H © H™) there exists a Z G Z(H © #p°°) such that

n

J2(A © p00iT(Al))Z(Bi © p°°tt(B1)) -WgK(H® H?).
¿=i

Now take arbitrary T G Z(HP) and let W be of the form 0©T°°. LetPkGZ(H@HpyD)
be the projection on the fcth coordinate space in H?°. Then it is easy to see that

the operators
n

^2pTT(Al)(PkZ\lmPk)pTT(Br)-T
i=l

are compact for every k = 1,2,... and their norms tend to zero as k tends to

infinity. Thus Im<? is dense in Z(HP), and the proposition is proved.    D

THEOREM 3.   If a, bG An anda is commutative, then

(1.17) o-(La-Rb)=o-(o3(a)-b);

and ifb is commutative, then

(1.18) o(La-Rb) = a(oj(b)-a).

PROOF. Again, it suffices to prove (1.17). In this case, by Theorem 1, only the

inclusions

(1.19) oi(ai(a)-b)Co(La-Rb),        or(or(a) ■ b) C o(La ■ Rb)

remain to be proved.
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The proof of (1.19) for separable H follows from the Proposition. For if s G ai (a)

and X G oi(s- b), then we take some noncompact projections P and Q such that

(a - s)tt(P) = 0 and (s ■ b - X)tt(Q) = 0, and let S be the C*-algebra generated by

Ai,... ,An,Bi,... ,Bn,I,P and Q, and pan injective representation of 7r(S). Then

(p(ä) - s)ptt(P) = 0 and s G ai(a(a)) since pn(P) jé 0. Similarly A G o~i(p(s ■ b)).

By Theorem 2, £ — X cannot be invertible, and by the previous proposition neither

can La- Rb~ X. This proves the first inclusion in (1.19); an analogous argument

proves the second.

If H is not separable, then first note that there exists an infinite-dimensional

separable Hilbert space Ho, which reduces all Az and 5¿, such that

(1.20) o-(o-3(a)-b) = o(o-3(ao)-bo),

(1.21) ar(ai(a) ■ b) = ov(oi(a0) • 60)

and

(1.22) <ri(oy(o) • b) = ai(ar(a0) • b0),

where a0 = (tto(Ai[Ho), ... ,TTo(An\Ho)), and 7rn is the quotient projection from

Z(Ho) onto Z(Ho)/K(Ho).
If Pn is the orthogonal projection from H onto Ho, then the elementary multi-

plication on A, denoted by So, which maps x G A into 7r(Po)x7r(Po) is in fact a

projection, and its range is a reducing subspace for La ■ Rb, thus defining the re-

striction La ■ Ra = (La-Rb)\lm So- By Theorem 1, (1.20)-(1.22), and the already

proved (1.19) for the separable case, it follows that

o(La ■ Rb) = ay(ai(a) ■ b) U ai(ar(a) • b)

= ar(ai(a0)-60)Uai(ar(a0)-60)

= o(La0 ■ Rb0) = ^te'te) • ko) = o-(oj(a) ■ b).    D

COROLLARY 2. If the n-tuples a andb of elements in An are both commutative,

then

(1.23) <j(La-Rb) = o3(a)-<y3(b).

PROOF. This a consequence of (0.6) and Theorem 3.    D

We conclude with a generalization of a result of L. A. Fialkow [5, Theorem 2.5].

COROLLARY 3. An elementary operator L& • Rb on Z(H), where the n-tuple

a — tt(A) (respectively, b = tt(B_)) is commutative, has dense range if and only if

X £ ai(ar(a) • b) (respectively, X G" or(oi(b) ■ a)) and there does not exist a nonzero

trace-class operator T such that (Lß ■ Ra — X)T — 0.

PROOF. By [15, Theorem 2] La • Rb — X has dense range if and only if the

restriction (La • R§_ — X)\K(H) and La-Rb — X G Z(A) both have dense range.

But (La ■ Rb — X)[K(H) has dense range if and only if its Banach space adjoint

(Lb ■ Ra — X\Ci(H) is injective and L„ ■ Rb — X has dense range if and only if

A G" o-\(ar(a) ■ b) (respectively, A ̂  ar(ai(6) -a)).    D
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