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AN ASYMPTOTICALLY NONEXPANSIVE COMMUTATIVE

SEMIGROUP WITH NO FIXED POINTS

DARYL TINGLEY1

Abstract. An example of an asymptotically nonexpansive commutative semigroup

with no fixed points is presented.

1. Introduction. Throughout this paper, IF will represent a commutative semi-

group (under composition) of self mappings of a weakly compact set K in a real

Banach space X. A fixed point for the semigroup 3F is a point x G K such that

f(x) = x for all /gJ*", denoted ^(x) = x. The existence of fixed points for

commutative (and weaker) semigroups, having some type of nonexpansive condition,

has been investigated by many authors (cf. [1-11, 14]). We list some of these

conditions.

Definitions. Let K be a subset of a Banach space X, and let J«r= {fa: a g A}

be a commutative semigroup of self mappings of K. Then J5" is said to be eventually

nonexpansive if

(a) for each /„ g & there is a real number ka such that \\fa(x) - fa(y)\\ <

ka\\x - y\\ for all x, y g K, and

(b) for every e > 0 there is a y g A such that kß < 1 + e whenever fß g /y Jr=

{/y/:/e^}.
If all of the constants ka in (a) are one, then J5" is said to be nonexpansive.

The semigroup J5" is said to be ultimately nonexpansive if each / G 3F is

continuous and for every x, y g K and for every e > 0 there is an / g & such that

for all geJf,

¡fg(x)-fg(y)U(i + e)\\x-yl

If this is satisfied with e = 0 then J5" is said to be asymptotically nonexpansive.

In the case that J5" is nonexpansive or eventually nonexpansive it has been shown

for a wide variety of Banach spaces X (most notably uniformly convex and those

with normal structure) that & always has a fixed point (cf. [3, 7, 14]).

On the other hand, for !F an asymptotically or the more general ultimately

nonexpansive semigroup, some additional conditions have always been used. Such
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conditions include the assumption that K be compact (cf. [8]) or a condition on the

orbits of points under & (cf. [5, 8]).

The question as to whether or not there is necessarily a fixed point for #", a

commutative asymptotically (or ultimately) nonexpansive semigroup, has not been

addressed in the above mentioned papers; however it would seem to be the natural

result to strive for. In this paper we present an example of an asymptotically

nonexpansive semigroup (indeed, something much stronger) generated by a single

function acting on a weakly compact subset of the Hilbert space I2, which has no

fixed points.

One of the reasons for studying asymptotically and ultimately nonexpansive

semigroups is that the functions need not be Lipschitzian, or even uniformly

continuous. Our example, coupled with the above mentioned results, suggests that a

condition to insure some type of uniformity is necessary to guarantee the existence

of fixed points of semigroups acting on weakly compact sets, even in a Hilbert space.

2. Preliminaries. In this section the definitions and preliminary results necessary

for our example are presented. This consists of a brief introduction to cones

associated with biorthogonal systems. These are considered in detail in [13].

Throughout this section X will be a Banach space, X* its dual.

Definitions. Let

8,, = {   ' .'        (i.e., the Kronecker 8).
J     \\),    i + j,

If {*,} G X, {xf} ç A"* then [x¡,xf} is called a biorthogonal system for X

provided that xf(x¡) = 8¡ . The cone associated with a biorthogonal system, de-

noted JT{jc,, x*} is defined by

Jf{jc„jc,*} = [x € X\xf(x) > 0}.

Biorthogonal systems are fundamental in the study of bases of Banach spaces (cf.

[12]). For our purposes, we require only that {jc,} be a "basis" for Jf"(jc„ jc*).

Indeed, we impose other conditions on the sequence {xt} that insure it is not a basis

for X. (The condition \imn(xn,xn+x) = 1 of Lemma 4 insures that the expansion

operators associated with [x¡, xf} are not bounded. This contradicts [12, Chapter

III, Corollary 2.3].)

Definition. The sequence {jc,} is said to be a basis for Jf{jc,, xf} provided that

for each x g Jf{jc,, jc*}, x = E°l, A,jc,, for some sequence of sealers X,.

It follows immediately that X, = xf(x) > 0.

Definition. A cone Jf is said to be normal if there exists a constant 5 > 0 such

that ||jc + y\\ > 8 for jc, y g Jf, \\x\\ = \\y\\ = 1. The biorthogonal sequence ( jc„ xf}

is said to be normal if Jt{x¡, xf} is normal.

Conditions sufficient for {x(} to be a basis for Jf{x¡,xf} are contained in the

following result [13, Theorem 2].

Theorem 1. Let X be a Banach space, ( jc,, jc*} a biorthogonal system in X such

that the associated cone JT(jc;, xf) is normal and sequentially weakly complete. Then

{ jc, } is a basis for Jf{ jc,, jc* }.
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Definition. A sequence {jc,} in a Hilbert space JF is said to be close if

(Xj,Xj) > 0 for all i and j. A biorthogonal sequence {jc/;jc*} for Jf is said to be

close if { jc, } is close.

In §3 a biorthogonal system which is both normal and close is used to construct

the example. We then present such a system.

It is easy to verify that if {x¡, xf} is normal, then {xf} must be total over X.

(That is, if x*(jc) = 0 for all i, then jc = 0.) In a manner similar to the proof of

Theorem 1, it can be shown that if {x¡,xf} is a close biorthogonal system for a

Hilbert space Jf and {xf} is total over Jf, then {jc,} is a basis for Jf{x¡, xf} and

then that { jc,, jc*} is normal. Thus the assumption that {jc,, xf) is both normal and

close can be replaced by the (formally) weaker assumptions that {jc,} is close and

{jc*} is total over X.

Lemma 1. Let { jc,, xf} be a biorthogonal sequence in a Hilbert space Jf which is

both close and normal such that \\x¡\\ = 1 for all i. If x g Jf { jc,, xf}, then L(jc*( jc))2

< IWI2-

Proof. Theorem 1 shows that jc = Y,f=xxf(x)xj. Thus

OO OO 00

IMI2= E E xf(x)xj(x)(xi,Xj)> E *,*(*)2,
;=1   ;=1 (=1

since (jc,, jc.) > 0 and ||jc,|| = 1 for all /' and /'.

3. In this section we present the example of an asymptotically nonexpansive map,

acting on a closed bounded subset of the Hilbert space I2, which has no fixed point.

We first do this in an abstract fashion, as this makes clear exactly what properties

are needed, and then give a concrete version.

Let {x,, jc*} be a biorthogonal sequence for a Hilbert space J4?, which is both

normal and close, such that ||jc,|| = 1. Theorem 1 then shows that for each x G

Jf{jc,, jc*}, jc = Ljc*(jc)jc,.

Letting B be the unit ball in Jf, define K = X {jc„ xf} n B. This is the set that

the semigroup will act upon.

For jc G K, let g(jc) = (1 - ||jc||)jc, + Yf*Lxxf(x)2xi+x and define the function /

by

llsOOII

Recalling Lemma 1, and noting that g(jc) # 0, it is easy to verify that both / and g

are well defined, and that /(jc) g K.

Lemma 2. The function f, and hence the semigroup {f"(x)\ « = 1,2,...}, has no

fixed points.

Proof. This follows by noting that f\f(K) is, loosely speaking, a shift on the

basis {jc,}.
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Lemma 3. The functions f and g, defined above, are continuous on K.

Proof. Since the norm is continuous, it is sufficient to show that
00

h(x) = ¿Z xf(x)2xi+x
; = 1

is continuous on K. In fact we show that h is continuous on JT{jc,, xf}.

Let y g Jt { jc,, jc*} be fixed, and assume that { v„} c Jf{x,, xf) converges to y.

Let e > 0 be given.

Since v = E°l. jc*( v)jc„ m can be chosen so that ||E°i„,+1 jc,( v)x,|| < e. Since xf,

is continuous, i = 1, 2,... TV can be chosen so that for n > N,

E xf(y„)x,- ¿Z xf(y)x¡
i-l ;=1

Thus for « > TV,

E    xf(yn)x,
< = m + 1

< e    and    \\yn - y\\ < e.

<\\yn-y\\ +

< 3£

E xf(y)x¡- ¿Z xf(yn)xi
/=! (=1

+ E    xf(y)x¡

and since {jc,} is close and ||jc,|| = 1 for all /,
00 00 00

E    xf(yn)2^     £ £    x*(v„)jc;(^)(x„x7)
i = m + 1 /—m+1  y=m + l

00

E  **{>»)*,
/' - m + 1

< 9e2.

Similarly, I.~lm + Xxf(y)2 < e2. For n > N,

\h(y) - h(y„) || =   E xf(yfxl+x - ¿Z xf(yn)2x¡ + :

"' r        2 2i
E l-xf(^)  - xf(y„) \xi+x

1 = 1

oo oo

+   E   *,*(;>)2 +   E   **(;02-
i' = m + 1 / = m + 1

Since x*(y„) -» jc*(y) for each / = 1, 2,..., it follows that

limsup||«(-y)-«(-yn)||< 10e2,
n

and since e was arbitrary that «(yn) -* h(y).

Thus «(jc) is continuous on -3f{x¡, xf}, and hence/ and g are continuous on K.

Lemma 4. /Isst/wie r/ia/ limn(x„, xn + j) = 1 for each i — 1, 2,_Then

lim|[/"(jc) -/"(>>) ||=0   /ora//x, y g tf.
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Proof. Let x g K be fixed. It is sufficient to show that

lim ||/"(jc) -/"(*!) ||=  lim \\f"(x)- = 0.

Let X(,0) = jc?(jc), i = 1, 2,..., and X\n) = xf+n(f"(x)), n = 1,2,...,  ; = 0, 1,....

Noting that ||/(jc)|| = 1, it follows that jc*(/2(jc)) = 1 - ||/(jc)|| = 0 and then that

xf(f"(x)) = 0 for ; = 1, 2,...,« - 1. Thus f"(x) = LfL0X\"]xi + n, n = 1, 2,...,
and x = ZfLiXfxi.

We note that for n > 1, E°l0 X*,"' < oo, and that for any i, j,

X^> Xi"~1) \

Un-1)

(\^r

^f,
Let  k  be the largest number such that  X^11 = maji{Xy}, let  a = X^1'  and let

,2-^(1)

ß = m&xf>k{\f}. Then for i > k,

ix'M2"x^>
x<;> IXS»

/3
A*,11

Using arguments similar to those used in Lemma 3, it is easy to see that X^"1 ̂ 1

for all «. Hence for « > 2,

oo oo \(n) i   n i2"   2       00 \(1)

¿-À- + 1 / = A + 1   A* V       ' ; = A + 1   Ak

Since/?/a < 1, lim„E°li + 1X</') = 0. From this and the assumption of the lemma,

1 = lim||/(B>(je)| lim ¿-i A,  xi+„

lim  ¿   ¿ X</'>XV'>U + ,„*, + ,,) = lim  ¿   £ X<#»»Xy»
"     i-0  7 = 0 "     i-0  7 = 0

/    k

lim E A<,">
\ /=o

Thus

hm\\f"(x) - xn + x\\2 = \im[\\f"(x)\\2 +\\xn + x\\2 - 2(f"(x),x„ + l)\

= lim 2-2£X<">(*í+„,*J o.   n

Lemmas 2, 3 and 4 show that if {jc,, jc*} is a biorthogonal close, normal sequence,

with ||jc,|| = 1 for all /, and such that lim„^00(x„, jc„ + ,) = 1 for all i, then {/"(jc):

« = 1,2,...} is a commutative asymptotically nonexpansive semigroup of functions,

with no fixed points. We now present such a biorthogonal sequence.
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Let

xx

x2

JC3

x4

In  general:   Define mk

mk + j, 1 <y < k + 1. Let e, be the ith standard basis vector of I1.

Then define

1 k

X" = ^TT,?„e""+J+'"

Letting xf = ex, x* = e2 and, in general, with n — mk +j, 1 </ < k + 1, define

x* = E*=/_ ,(<?„,_+,- - e„, +/_,) (where e-m()+, = 0 for all j). It can be verified that

{jc,., x*} form a biorthogonal sequence which is both close and normal, ||x,|| = 1

and lim„(x„, x„ + /) = 1 for all /'. Thus work in this section can be applied to

{x,, xf}, producing a concrete example of an asymptotically nonexpansive com-

mutative semigroup, acting on a weakly compact set in I2, which has no fixed point.

We would like to point out that {/"(x): n = 1, 2,...} satisfies a condition much

stronger than asymptotically nonexpansive, since

lim ||/"(x) -f"(y)\\=0    for all x, y & K.
I1—-O0

This implies that / is asymptotically regular (i.e., lim„_<00||/"(x) -/"+1(*)ll = 0).

Asymptotically regular functions have frequently been used in fixed point theory (cf.

[1, 6]), in particular for theorems that characterize the location of fixed points.

Finally, it should be noted that / is neither uniformly continuous nor uniformly

asymptotically regular (cf. [6]), leaving open some obvious questions.

References

1. F. E. Browder and W. V. Petryshn, The solution by iteration of nonlinear functional equations in

Banach spaces. Bull. Amer. Math. Soc. 72 (1966), 571-575.

2. R. E. De Mann, Common fixed points for commuting contraction mappings. Pacific I. Math. 13

(1963). 1139-1141.
3. M. Edelstein, On nonexpansive mappings of Banach spaces, Proc. Cambridge Philos. Soc. 60 (1964),

439-447.

4._Fixed point theorems in uniformly convex Banach spaces. Proc. Amer. Math. Soc. 44 (1974),

369-374.

5. M. Edelstein and M. T. iCiang, On ultimately nonexpansive semigroups, Pacific I. Math. 101 (1982),

93-102.

6. M. Edelstein and R. C. O'Brien,  Nonexpansive mappings, asymptotic regularity, and successive

approximations. I. London Math. Soc. (2) 17(1978), 547-554.

7. K. Gocbcl and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc.

Amer. Math. Soc. 35 (1972), 171-174.

DARYL TINGLEY

(1,0,0,0,...),

**•*•"■■■)•

0,0,^,^,0.0,...),

0.0,0,-^,—,-=,0,0,...
i/3    73    v^

Ef_ii = k(k 4- l)/2.  For an arbitrary «, write  n  as



AN ASYMPTOTICALLY NONEXPANSIVE SEMIGROUP 113

X. R. D. Holmes and P. P. Narayanaswami, On asymptotically nonexpansive semigroups of mappings,

Canad. Math. Bull. 13 (1970), 209-214.
9. M. T. Kiang, Fixed point theorems for certain classes of semigroups of mappings. Trans. Amer. Math.

Soc. 189(1974), 63-76.
10. T. C. Lim. A fixed point theorem for families of nonexpansive mappings. Pacific J. Math. 53 (1974),

4X7-493.

11._A fixed point theorem for multivalued nonexpansive mappings in a uniformly convex Banach

space. Bull. Amer. Math. Soc. 80 (1974), 1123-1125.
12. J. T. Marti, Introduction to the theory of basis, Springer-Verlag, Berlin, 1969.

13. C. W. McArthur, I. Singer and M. Levin, On the cones associated with bio-orthogonal systems and

bases in Banach spaces, Canad. J. Math. 21 (1969), 1206-1217.

14. D. W. Tingley, The construction of a fixed point for certain families of mappings. Applicable Anal, (to

appear).

Department of Mathematics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H8

Current address: Department of Mathematics, University of New Brunswick, Fredericton, New Bruns-

wick. Canada.


