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ON THE UNIVALENT FUNCTIONS STARLIKE
WITH RESPECT TO A BOUNDARY POINT

PAVEL G. TODOROV

ABSTRACT. For the examined functions, we have obtained a structure formula

and estimates for |/(z)/(l-z)j and | arg(/(z)/(l-2))|, the moduli of the partial

sums of the coefficient series and the moduli of the coefficients.

Recently, Robertson [1] introduced the following two classes of univalent func-

tions:

DEFINITION 1. Let G* denote the class of functions f(z) analytic in D =

{z\ \z\ < 1}, normalized so that /(0) = 1, /(l) = limr_>i f(r) = 0, and such that

for some real a, Re[etaf(z)] > 0, z € D. In addition let f(z) map D univalently on

a domain starlike with respect to f(l). Let the constant function 1 also belong to

the class G*.

DEFINITION 2. Let G denote the class of functions f(z) analytic and nonvan-

ishing in D, normalized so that /(0) = 1 and such that

Robertson [1] conjectured that the classes G* and G coincide. Recently, Lyzzaik

[2] proved this conjecture.

Now we shall continue the study of the class G.

THEOREM 1. The function f(z) belongs to the class G if and only if f(z) can

be written in the form

(2) f(z) = (l-z)expí- Í   \n(l - ze-ü)dfi(t)\ (z £ D),

for some probability measure p, defined on the interval [-7r,7r].

PROOF. It follows from (1) and a classic result due to Herglotz that

2zf'(z)     l + z       r l + ze~lt

m 1 - z     J-nl- zt~li   ^ '

holds in D for some probability measure p(t). A simple integration now yields the

desired structure formula (2) for f(z).

THEOREM 2.  For a fixed z £ D, we have the relation

(3) {w\w = (1 - z)lf(z), f(z) £ G} = H \w - 1| ̂  |*|},
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where for z ^ 0 the equality holds only for the functions

1 — °°
(4) /(*) = TZr^Tz = 1 + £ &™ - ei(n~l)u]zn £ G,       u £ [-*,*].

n=l

PROOF. From (2) it follows that

(5) ln^ =J*ln{l-zer*)dn{t)

holds in D. According to the Carathéodory principle [3] (see also [4, p. 543; 5]),

from (5) it follows that for a fixed igPwe shall have the relation

(6) jc|c = ln^, /(*)£G}=CH{c|c = ln(l-ze-ií), i£ [-*,*]},

where CH denotes the convex hull of the set in the braces. The function

(7) <; = lnw

maps the w-plane out along the negative real axis onto the strip {c|—ir < Im f < 7r}.

It is clear geometrically that the function (7) maps the disc {w\ \w—l\ < \z\, \z\ < 1}

onto some convex domain lying in this strip. Therefore, for a fixed z £ D from (6)

the relation

(8) lw\w = ]j^, f(z) £ g\ = CH{w\w = 1 - ze-lt, t £ [-*,*]}

follows. Now the relation (8) can be written as (3) with (4).

COROLLARY 2.1.   We have the relation

(9) \J \w\w=-¿fí, z€D\={w\\w-1\<1}.
fee l }^z> >

PROOF. The relation (9) follows from (3) for |*| -+' 1.

COROLLARY 2.2.  For z £ D and f(z) £ G, we have the sharp estimates

(10) 1/(1 + |*|)<|/(*)/(l -z)\< 1/(1 -|*|)

and

(11) |arg(/(*)/(l-*))|<arc8in|*|,

where for z ^0 equality holds only for the functions (4) at the "critical points"

(12) z = ±\z\e~ioj

and

(13) z — |2|e±t(7r/2=Fw-arcsin|z|)

respectively.

PROOF. The inequalities (10) with (12) and (11) with (13) follow from (3) on the
basis of the inequalities 1 — |*| £ |tu| ^ 1 + N and | arg w\ < arcsinl^], respectively.
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COROLLARY 2.3.   For each function

(14) /(*) = 1 + dxz + d2z2 + ■■■ + dnzn + ■■■

of the class G in D, the inequalities

(15) |l-r-di + d2-r---- + d„| < 1,        n = l,2,...,

and

(16) K|<2,        n = l,2,...,

hold with equality in (15) only for the functions (4) with w £ [-7r,7r] and in (16)

only for the function (4) with w = ±ir, i.e., f(z) = (1 - z)/(l + z).

PROOF.    We write w = f(z)/(l - z).   Then (9) yields \l/w - 1|  < 1, i.e.,

Re w > j. If

oo

w - ¿2 Snzn,        Sn = d0 + dx H-h dn, d0 = 1,
n=0

the Borel-Carathéodory inequalities applied to 2w — 1 yield 2|5n| ^ 2, as required.

REMARK. The results in this paper can also be obtained by other methods and

results due to Robertson [1, p.   331, Theorem 1; 6, p.   318, Theorem 7; 7, pp.

385-386], Schild [8] and Pinchuk [9, pp. 722, 727-728, 732].
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