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A BEST CONSTANT AND THE GAUSSIAN CURVATURE1

HONG CHONGWEI

ABSTRACT. For axisymmetric / £ Coc(S2) we find conditions to make / the

scalar curvature of a metric pointwise conformai to the standard metric of S2.

Closely related to these results, we prove that in the inequality (Moser [8])

f   eu < Ce»v«»t/16*    V«e/-?(Sa)with   /   « = 0,
Js* Js*

the best constant C = Vol(52).

1. Introduction and main results. Given f(x) £ C°°(S2), a very interesting

problem is to find a condition on f(x) so that it can be made the scalar curvature

function of a metric pointwise conformai to the standard metric of S2. Assume

that Vol(S2) = 47T. This problem is equivalent to the existence of solutions of the

equation (cf. [1, 2])

(1.1) Au(i) - 2 + fix)eu^ = 0,        x £ S2 (Au = V'V¿u).

The following results are known (cf. [3]): One can solve (1.1) if

(a) fix) = f{—x) and f(x) > 0 somewhere (Moser [4]).

(b) f{x) is replaced by f{^(x)) for some diffeomorphism \I>, f(x) > 0 somewhere

(Kazdan and Warner [5]).

(c) /(i) is replaced by /(x)+/.(x) for some/i G A = {<p £ C°°(S2)\-A<p = Xiip}
(Aubin [6]).

Kazdan and Warner [7] proved that if u is a solution of (1.1), then

(1.2) f  Vi/Vih-eu = 0   V/iGA.
s2

Closely related to the above problems is the following inequality proved by Moser

[8]:

(1.3) f   eu < CellVu^16ff    VuGiî12(S2)with   /   u = 0.
Js2 Js3

Let x = (i?, tp) £ S2, where -tt/2 < i? < 7r/2, — n < tp < ir are the latitude and

longitude respectively. Let N, S £ S2 be the North and South poles respectively.

Set
C^(S2) = {u£ C°°(S2) | u is independent of <p},

H2#(S2) = the closure of C^(S2) in H2(S2).
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In §2 we prove the following existence results for equation (1.1):

Consider the functional

(1.4) I(u) = U   \Vu\2 + 2Í   u,        u£H2(S2),
* Js2 JS2

and set p = inf I(u) for all u £ C$°(52) satisfying j$2 feu = 8tt.

THEOREM 1.1.   Iff£C^(S2) and max(/(N),/(S)) > 0, then

(1.5) p<87rlog
max(/(N),/(S))-

(L6) ^<8dogH7(W'

then equation (1.1) has a solution u £ C^(S2).

REMARK 1.1. This result resembles that of Aubin [2] for the Yamabe problem
and in one of Brezis and Nirenberg [9].

EXAMPLE 1.1. (a) / = sint?. Letting h = f = sint? in (1.2), we know that
(1.1) has no solution. Hence by Theorem 1.1,

o

(1.7) p = 87rlog
max(/(N),/(S))'

(b) / = sin2i?. Since f(x) = f(-x), (1.1) has a solution by Moser [4]. In this

case, (1.7) holds. Using Theorem 1.5 we have

8tt = /   feu < [   eu< 47rexp I-¿- Í   |Vu|2 + -?- /   u\ ;
JS2 JS2 I iDTT Js2 47T JS2     )

therefore

(1.8) \ f   |Vu|2 + 2 /   u>87rlog2.
2 JS2 JS2

Combining (1.8) and (1.5), we obtain (1.7).

THEOREM 1.2.   Suppose that f £ C^(S2), max(/(N),/(S)) < 0 and f(x) > 0
somewhere.  Then equation (1.1) has a solution u £ C^(S2).

COROLLARY 1.3.   Suppose that f £ C$>(S2), f(x) > 0 somewhere and

'-VolW*2'-^^'^-

Then (1.1) has a solution u £ C^(S2).

COROLLARY     1.4.  7/ /    G    C£°(S2)   and   at   one   pole,   say   N,   /(N)
> 0, d2/(N)/di?2 > 0 and /(N) > /(S), then (1.1) has a solution u £ CfiS2).

The above results are closely related to a best constant. The following theorems

are proved in §3.
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THEOREM 1.5.   On (S2,can) in (1.3) the best (smallest possible) constant C =

Vol(52); i.e.,

(1.9) [   eu< Vol(S2)ellVull2/16*    Vu G H2(S2) with  f   u = 0.
Js2 Js2

Moreover, the equality in (1.9) holds for

^ = l0S(i-A"sinV+CA  ^(-M).

tz;/iere
1,     1 + A     „

so fS3 u\ = 0, and en = lim^-_,o ca = 0.

Consider the functional

m = log/s, /e- - ¿ /si IV-I" - ¿ /si »,       „ - H?(S»).

Moser [8] proved that J(u) is bounded above and stated an open problem.   Is

suPu€__2(S2v f/e">o J(u} *a^en on? Concerning this we have

THEOREM  1.6.  V/ G C°°(S2) and /(as) > 0 somewhere (without symmetry

assumptions on f) we have

sup     J(u) = log ( 4-7T max f(x) ) .
ue-/2(s2) V    *es2        /

//e«>0

Moreover, this supremum is never taken on unless f = const > 0; when f = const >

0, this supremum is attained by u\ = -21og(l - Asintf) + C, VA G (-1,1), C £ R.

2. Proofs of existence results. Given / G C^°(S2), let {u„} be a minimizing

sequence in C^(S2); i.e.,

(2.1) I(un) -» u   and     /   /eu" = 8tt   Vn G N.
Js2

Lemma 2.1. If 3C > 0 suca íao.

(2.2) /Js-

then equation (1.1) has a solution u £ C^(S2).

PROOF. The same reasoning as in Aubin [2, 5.10(b) and 5.9(b), (c)] shows that

(2.3) un-ü(H2w(S2)),      [   /eü = 87T
Js2

and

(2.4) /   VlüVlh + 2 [   h-ai   feüh = 0   \/h £ H2¿(S2).
Js2 Js2 Js2

|Vun|2<C   Vn£N,
's2
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Since û G H2#(S2), then by orthogonality of spherical harmonics and noticing

that if v £ Cg°(S2), then Ai; G C$>(S2), ev £ C$>(S2), one can deduce that (2.4)
holds V/i G H2(S2). Thus u - ü is a weak solution of Au - 2 + afeu = 0. As in

Aubin [2, 5.9(c)], we get û G C^(S2). Integrating on S2 yields a = 1.
Thus we are led to find a condition to ensure (2.2), so we can prove that (1.1)

has a solution.

LEMMA 2.2. If u £ Cf(S2) and 30 < <5 < tt/2, cuc2 £ R, |i?0| < n/2 - 6
such that

(2.5) I(u) < ci    and   u($0) __ c2,

the*.

(2.6) /   |Vu|2<C(¿,_i,_2),
Js2

where C(6,ci,c2) depends only on 6,ci and c2.

Proof. Set
Mi = {x = {ê,<p) £ S2|tf0 < 0 < tt/2},

M2 = {x = {-Ô, tp) £ S2\ - tt/2 < t? < t?o}.

We have the Poincaré inequality

(2.7) Aim,/   v2 < f   \Vv\2   Vtz€lí?(M.), t = 1,2,

where \im{ is the first eigenvalue for —A on M¿ with u|dA_¡ =0.  By a result of

Cheeger (cf. [1]) X1Mi > \hDiMi)2 and

ho(Mi) = inf \  -. ,.-.   | fi is a compact subdomain of M¿ > .
I Vol(fi) J

Thus

(2.8) A1Ml > \hD{Mi)2 = \( inf -^S^—)   __ C3(¿) > o.
V       ' l        4        K        ' 4  \-ir/2+-<f»o<<K7r/2 27r(l - SU11?) /

Similarly,

(2.8) Aim. >c3(<5)>0.

By (2.7), (2.8), Viz G C^°(52) with v{d0) = 0 for some tf0. |tf0| < tt/2 - 6, we have

/    \v\= [    \v\+ f    \v\<c   ([   v2)      +([   v2)
JS2 JMi JMi L\JMi      / \JM2      /

<c{6)(js2\vv\2y2.

By (2.5)

ci>l f   \Vu\2 + 2Í   u>\ f   |Vu|2 + 8ttc2 + 2 f (u - u(i.o))
¿ Js2 is2        ¿ ./s2 is2

> J /   |Vu|2 + 87Tc2-2 /   |u-u(i?o)l> J /    |Vu|2 + 87rc2
¿ Js2 Js2 í Js2

-2C({)(/SJV„P),/2.

Therefore (2.6) is true.
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REMARK 2.1. More generally, if u G G°°(52) (without symmetry assumptions

on u) and 3ci,C2 G R such that I(u) < ci and either

(a) 36 > 0 such that meas{a: G S2 | u(x) > c2} > 6, or

(b) 30 < 6 < tt/2, |#o| <n/2-6 such that

1   r
— /    u(§o,p)dtp> c2,

then (2.6) holds.
We do not use this result but sketch the proof as follows:   In case (a) let

ü(í?) be the symmetric rearrangement for u (cf. [2, 2.17]); in case (b) let u(i?) =

(l/27r) /*_. u(é, ip) dtp. In both cases one can prove that /s2 ü = /s2 u and /s2 | Vu|2

< L2 |Vu|2; hence

(2.9)

- /    |Vu|2 < ci - 2 /   tt = a - 2 /   u<ci- 8ttc2 - 2 /   (ü - ü(i90))
¿ 7s2 js2 Js2 Js2

<ci-8ttc2 + 2 /    |ü-ü(t?o)| <ci-87rc2 + c( /    |ü - ü(tf0)|2)1/2.
./s2 \./s2

By the proof of Lemma 2.2, we have

(2.10)    (J  \ü- û(tf0)|2)      < C{6) (J   IVûl2)1 2 < C(i) (|s2 IVul2)1    .

Then (2.6) follows from (2.9) and (2.10).

PROOF OF THEOREM 1.1. Without loss of generality, assume that /(N) > /(S)
and /(N) > 0.

(a) Set

We have

2(1 - A2)

UA=l0g/(N)(l-Asin<.)2'       A^1_-

[tux- 47r(! - A2)  Z"72 /W-coatfdtf

/s2 /(N)      y_w/2 (1-Asintf)2

_  n      \2ï r/2      cosi?dc9
= 47Tl-A2)/ j-—     .

y-Tr/2 (1-Asini9)2

4tt(1 - A2)   r/2 (/(<?)-/(N)) cob 0cW

/(N)      ;_w/2        (1-Asintf)2

4tt(1 - A2) f r/2-W (/(tf) - /(N))cost9<

[/:
8?r+      /(N)      [7_V2 (1-

r*/i       (/(#)-/(N))cosi?dtf

Jn/2-ét/2-.(.) (1-Asintf)2

= 87T + e(A),     where e(A) —» 0 as A —» 1~

Therefore (1.5) is true.

and
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(b) If p < 87rlog(2//(N)), consider the minimizing sequence {un} C Cf(S2)

satisfying (2.1). Notice that Ve > 0, 36 > 0 such that f{d) < /(N) + e if |i?| >
n/2 - 6. Suppose that Js2 |Vun|2 -> +00 as n -+ +00. Then by Lemma 2.2 we

have un(#) —► -00 uniformly in ê for |i?| < 7r/2 - 6 as n —► +00. Thus by Theorem

1.5 we have

877=/   feu" <nn + (/(N) + e) /   eu»
js2 7s2

<í?n + (/(N) + ,)47rexp{¿/s2|Vun|2 + ¿/s2Un},

where

Vn= [ feu" - 0.
J|i5|<7r/2-6

Hence
87T-J7„

/(un)>87Tl0g
47r(/(N) + e)"

Since nn and 6 > 0 can be arbitrarily small, we get p > 87rlog(2//(N)), which

contradicts (1.6). Therefore there exists a subsequence, still denoted by {un}, such

that /S2 |Vun|2 < C. Then by Lemma 2.1, (1.1) has a solution u G Gg°(52).

Proof of Theorem 1.2.
Case 1. max(/(N), /(S)) < 0. By the continuity of /, 3<5 > 0 such that /(t?) < 0

if |#| > 7r/2 — 6. Consider the minimizing sequence {un} as above; we have

87T = /    feUn < / feUn < 4-K max fix) ■ exp{    max    un};
•/S2 J\*\<*/2-6 x€S2JK KVl<*/2-«

i.e.,
2

max    un (î?) > log
|t?|<7r/2-_ max/'

Thus, by Lemmas 2.2 and 2.1 we obtain a solution u G CfiS2) of (1.1).

Cose 2. max(/(N),/(S)) = 0. Again, consider the minimizing sequence {un} C

C^°(S2). Assuming that fg2 |Vu„|2 —► +00 as n —> +00, we proceed as in the

proof of Theorem 1.1(b) and get /(un) —► +00, a contradiction. Then by Lemma

2.1, (1.1) has a solution u G G^°(52).

Proof of Corollary 1.3.
Case 1. max(/(N),/(S)) < 0. Corollary 1.3 follows from Theorem 1.2.

Case 2. / > max(/(N),/(S)) > 0. Set w = log(2//). Then /s. /e«0 = 8tt and

P<ö/    [ Vitj|2 -h 2 /   tzj = 87rlogT < 87rlog
2 Js2 ./s2 / max(/(N),/(S)y

Thus Corollary 1.3 follows from Theorem 1.1.

Gase 3. / = max(/(N), /(S)) > 0. If (1.1) has no solution, then by Theorem 1.1

2 2
p = 87rlog-.  ,   .     . .. =87rlog7.

max(/(N),/(S)) /

But w = log(2//) achieves the infimum p, so we obtain a contradiction.
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Consider the diffeomorphism FPt\: S2 —> S2, A G (—1,1), p G S2, defined as

follows: Suppose that p = N. Then if x = {&, <p) £ S2, y - FN<x(x) = (i?i,Pi) €

S2, we have

,_   1 v .   „        sin i9 - A
2.11 8ini.i = --r-r—=,        v^i=^-

1 — A sin y

Then Fp,_A o Fp,x = id Vp G S2, A G (-1,1).

LEMMA 2.3 (CF. AUBIN [2]). Vp G S2, A G (-1,1), equation (1.1) has a

solution for f £ C°°(52) (without symmetry assumptions on f) if and only if (1.1)

has a solution for f o FPtx ■

PROOF. This lemma can be seen by the composition of two conformai trans-

formations of S2, the first one FPi\ has its pole at p (cf. [2, the proof of Corollary

5.12]). We can also prove this lemma as follows:

Assume that p = N. If v{y) is a solution of (1.1)—i.e., Ayv{y) — 2 + f{y)é°W' —

0—set
1 -A2

u(x)=log        A 2+v(Fn,aO.)),        A G (-1,1)

(see (2.11)). We have

vT^Fcostf      dêi       \ZTrX2
COSWi =

1-Asintf   '      dd       1-Asini9'

1     d  (      adu\ 1     d2u
AXU =-; -ZTZ I COS V-7?z }

cos ê de \        dd J     cos21? dip2 '

Direct computation shows that u(x) satisfies Axu — 2 + f(Fw,\(x))eu = 0, and since

i*N,-A o -Fn.a = id, Lemma 2.3 follows.
PROOF OF COROLLARY 1.4. Use the conformai diffeomorphism Fn,a (see

(2.11)) and set f\ = fo Fn,a- Then

/A = 2L/2f^COS»M = ^2-J^/2  (1 + Asin^)2 ■

Since d2/(N)/di?2 > 0 and d/(N)/di? = 0, 3a > 0, e > 0 such that /(t?_) - /(N) >
o(tt/2 - i?,)2 for 0 < tt/2 - i?i < e. Thus

? _ /nu - Iz_ñ? T/2 (/(tfi)-/(N))"»<M*i
/a   /i«;-    2    y_^        (i + Asin^)2

- i~x2 ( r/2~£ + r'2 \
2        \J-n/2 h/2-e)

Let £ be fixed and A —> —1+. Then one can verify that f_vJ% £ — c(e) an(^ i^/2-£ ~~*

+00. Therefore f\ - /(N) > 0 if A is sufficiently close to — 1. Then applying

Corollary 1.3 for f\ and Lemma 2.3, we deduce Corollary 1.4.

REMARK 2.2. (a) Corollary 1.4 can also be derived directly from Theorem 1.1

without invoking Lemma 2.3.

(b) Combining Lemma 2.3 with the previous results, by composition with Fp<\,

one can find a class of functions / for which (1.1) has no solution and VifVlh
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changes its sign on S2 for ail h £ A = {¡p £ G°°(52)| - &<p = Xip}; also one

can find a class of functions / for which (1.1) has a solution and / is neither

axisymmetric nor antipodally symmetric.

3. A best constant.

LEMMA 3.1.  Ifu£ C^(S2) satisfies Au - 2 + 2eu = 0, then

(3.1) «^(i-A^V "1<A<L

Proof, u satisfies

(3.2) ¿_(costf.u^-2 + 2e* = 0,        *€ (-*,£)   («, A *) .

Let r = 2 tan(7r/4 + ■a/2) (stereographic projection). (3.2) becomes

(3.3) urr + -ruT- 2Í1+ T-\     +2Íl + j)     eu = 0,       r€(0,oo).

Set

(3.4) u = log((4 + r2)2/32) + y.

(3.3) is reduced to

(3.5) ryrr + yr + rey = 0,        r€(0,oo).

Now (3.5) can be solved as follows (cf. [10, 6.76]): Setting

(3.6) i_(_) = ryr,        t = r2ey,

from (3.5), we obtain (w + 2)wt + 1 = 0. Thus

(3.7) (uz + 2)2 +2. = 4a2,        a > 0 a constant;

i.e.,

(3.8) r2y2 + 4ry- + 2r2ey + 4(1 - a2) = 0.

Combining (3.5) with (3.8), we get

(3.9) 2r2yrr = r2y2 + 2ryr + 4(1 - o2).

Setting y = -21ogp, we get from (3.9) the Euler equation

r2p„ - rpr + (1 - a2)p = 0.

Hence p = cir1+a + _2r1-a > 0 and

(3.10) 2/ = -21og(cir1+a + .2r1-a),       r€(0,oo).

Substituting (3.10) into (3.6) then into (3.7), we get cic2 = l/8a2; obviously ci >

0, c2 > 0. By (3.4), (3.10) and cic2 = l/8a2 we obtain

(3-11) u = 2l0g2(c2r^2+-4^)'        c3^V8aCl>0, a > 0.

Since u G C^°(S2) and r = 2tan(7r/4 + i9/2), lim-_o u and limr_+0Ou must be

finite. From (3.11) we get 0 = 1. Setting A = (1 - 4c§)/(l + 4c§), we obtain (3.1).
One can verify that u G Cjf (S2) and Au - 2 + 2eu = 0.



A BEST CONSTANT AND THE GAUSSIAN CURVATURE 745

LEMMA 3.2.   We have (see (1.4))

(3.12) /?=      inf      J(u) = 0.
ueH2(S2)

The infimum is attained by

1-A2
UA=l0g71-x   ■     QNO' - 1< A < 1.

(1 - Asinw)2

PROOF, (a) Direct evaluation shows that fg2 eUx = 47r and I(u\) = 0; therefore

ß <0.
(b) If ß < 0, since C°°(S2) is dense in H2(S2) and the mapping H2(S2) 3

ip -* e1" £ Li(S2) is compact [2, Theorem 2.46], then 3vQ £ C°°(S2) such that

fs2 eVo = 47T and I(vo) < 0. Set . = min-es- vo(x).

(3.13)

Cb — inf I(v)   for u G H2(S2) satisfying   /    ev = 4ir and ess inf v(x) > 6.
JS2 X&S2

Then G. < 0. Let {íz¿}£L, C H2(S2) be a sequence satisfying (3.13) and I(v%) -»

C. < 0. Using Friedrich's mollifier for «¿, then using symmetric rearrangement [2,

2.16, 2.17], we find a sequence, still denoted by {v¿} C H2â(S2), satisfying (3.13),

I(ví) —> Cb < 0 and Vi(d) is nondecreasing in ■_>.

(c) From _"(v¿) —► Cb and J*s_ t>¿ > 47r6, we get that fs2 |Vtz¿|2 is bounded. As in

the proof of Lemma 2.1, we have tz¿ —* w £ H2#(S2),

(3.14) /   ew = \-K,        essinfuz(x) >6   and   I(w) = Cb < 0.
JS2 x^S2

Moreover, w($) is nondecreasing in ê. We claim that ess inf w(x) = . and w(x) ^ b.

In fact, if w(x) = b — const, since /g2 ew = 47r, we have w(x) = 6 = 0 and J(uz) = 0,

which contradicts (3.14); if ess inf w(x) > b, then one can derive that w G Hi#(S2)

satisfies Aw(x) - 2 + Xew(-X^ = 0, x £ S2, and the Lagrange multiplier A = 2, as in

[2], w £ C$>(S2) and by Lemma 3.1, w = log[(l - A2)/(l - Asintf)2], again we get

I(w) — 0, a contradiction. Hence 3 - 7r/2 < ■do < t/2 such that w(ê) = b if ■& < ■âo

and w(ê) > b if i90 < 0 < tt/2.

(d) Set

MT = {x = (t?,¥.)G52|z9>r}.

From (c), noticing that if h £ Co°(M#0) satisfies jg2 ewh = 0 then jg2 VlwVih +

2 fg2 h — 0, one can derive that w satisfies

(3.15) Au>(x) - 2 + pew{x) =0   for x G M#0,

where p £ R is the Lagrange multiplier. Since ew £ Lp, Vp > 1 and w £ H2#(S2),

by the standard regularity argument we get w £ C°°(M^0). We claim that p > 0.

In fact, if p < 0, integrating (3.15) on M,? (t? > tin.) shows that w(d) is strictly

decreasing in ê if i9 > #o, a contradiction.
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(e) Since w G H2#(S2), one can prove that w G G(S2\{N U S}). Using the proof

of Lemma 3.1, we have

W"2l0g2(|r'+» + r'-°)+C4'        a>0, c3>0,

r = 2tan(| + |V        0 > 0„.

We claim that a = 1. Otherwise we have lim^_T/2 w = ±oo, a contradiction. Thus,

3A G (-1,1) such that

f 1 - Asini?0  . ,    •,. q ̂   q
(3.16) uz=    21°gi-Asint?+b   Úd>d°'

[b iftf<#0.

(f) From (3.16) and ¡g2 ew = 4tt we get

(3.17) 2e-" = 2(1-As;n*o) - A;°s2f° = 2p - 9,
1 — A 1 — A

where
a 1 - A sin i?o     „        a A cos2 $o

P=      1-A      >0'    9=n^X-

From (3.16) we have

(3.18) I(w) = \[   \Vw\2 + 2Í   uz = ^+41ogp + 46.
2 Js2 is2 P

By (3.17), (3.18) we have

/(u,)__l^+41ogp + 4(6-l) = F(p),        p>0.
P

Minimizing the function F(p) for 0 < p < +oo, we obtain I(w) > 0, contradicting

(3.14) and thus completing the proof.

PROOF OF THEOREM 1.5. By Lemma 3.2, the best constant G in (1.3) is

C = uzh^s2) el|V^/16ff = uzh2%2) exp{||Vu||2/16S7r3+(l/47r)/S2u}

/s2"=°

47T

inf _";.,- r     „   .   e-fW/8-     4?r'
ueH2(S2);Jg2e"=47r

and, in general, G = Vol(52).

The rest of Theorem 1.5 can be verified by direct evaluation.

Proof of Theorem 1.6.
Case a. / / const. By Theorem 1.5, we have

(3.19) J(u) < log max fix) + log f   eu - -L I   | Vu|2 - ¿ /  «
x<_S2 JS2 l07T _*S2 47T yS2

< log(47r max f(x)).
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Without loss of generality, suppose that /(N) = max-eg2 f(x). Set

1 - A2

UA=1°g47r(l-Asini9)2'

One can verify that evx —> 6n (Dirac ¿-function) as A —► 1~ and I{v\) — -87rlog47r.

Thus J(v\) —* log(47rmaxlGs2 f(x)) as A —► 1~.

Case b. f(x) = a > 0, where a is a constant. Similarly we get J(u) < log(47ra)

and J(u\) = log(47ra), where ux = -21og(l - Asint?) + G, A G (-1,1), C £ R.

Thus Theorem 1.6 follows.
Theorem 1.6 tells us that if we want to prove the existence of solutions of (1.1)

via critical points of a functional, generally speaking, we have to look for a local

extremum, a saddle point and so on.
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