
proceedings of the
american mathematical society
Volume 98, Number 4, December 1986

BAKER FUNCTIONS FOR COMPACT RIEMANN SURFACES

R. J. SCHILLING

ABSTRACT. This article contains a proof of an important theorem in soliton

mathematics. The theorem, stated roughly in [4], contains necessary condi-

tions for the existence of a vector function

xp(t,p) = (ip1(t,p),...,Mt,p)),      tec»,      PeR,

with prescribed poles and / essential singularities an a compact Riemann sur-

face R of genus g. V ¡s called a Baker function in honor of the 1928 article

[1] of H. F. Baker. This report clarifies Krichever's description of %j> for I > 1

essential singularities. The divisors Sa in (1) below are the key to the I > 1

construction. Krichever's (I > 1) construction is not easy to deal with in prac-

tical problems. E. Previato [5] noted this and applied our characterization

of the Sa to construct the finite gap solutions to the nonlinear Schroedinger

equation.

1. Baker functions. Let there be given a compact Riemann surface R of genus

g and fix l(> 1) distinct points, oo = coi + • • • + co¡, of R. Let k"1 be a local

parameter vanishing at coQ and let 0a be a polynomial in kq . Let A be a positive

nonspecial divisor on R. We define a complex linear space A = A(A, oo, ©Q) by the

following properties. A function ib belongs to A if

(Al) tb is meromorphic in p G R — oo,

(A2) (tb) + A > 0, i.e., any pole of ib lies in A,

(A3) near coQ, tp(p)e~Ba^Ka^p^ is holomorphic.

The purpose of this paper is to compute dime (A). The idea is this. If the Qa are

"small", in a sense to be made precise, then the zero divisor A of any function in

A would be "close" to A. Since the nonspecial divisors are an open set, our choice

of A would imply that A is a nonspecial divisor of degree equal to deg(A). This,

we will see in the proof of Theorem 3 below, implies

dime (A) = deg(A) - g + 1.

The reader may consult [2] for a current article with background on these matters.

Let us introduce a vector t = (to,t\,...) of complex "time" parameters.   Let

there be given polynomials 0Q  = @a(t,Ka) with coefficients analytic in t and

9Q(0, kq) ss 0.   Let A be a positive nonspecial divisor of degree g + I — 1 such
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that L(A — oo) = {0}. The linear space L(A) contains a basis /i, ■ • •, // such that

fa(ooß) — 6aß. Each divisor

(1)       Sa d= A + (fa) - oo + œa = (A - (fa) - oo) + ((/Q)0 - (oo - 00«))

(a = 1,..., I) is nonspecial and of degree g. The nonspeciality of 6a is not obvious.

To see this let / G L(6a). The product ffa has poles in A and zeros at each point of

oo —ooa. Therefore, ffa = (constant)/Q and / = constant. This proves L(6a) = C.

It follows then that 6a is nonspecial. The following theorem is a generalization of

a construction apparently due to Clebsch and Gordan. See [2]. The notations of

the proof follow [3].

2. PROPOSITION. Let (R,oo,g,Ka,Qa) as above. Let 6 be a nonspecial divisor

of degree g and supported in R — oo. Then there exists precisely one function x = Xs

with these properties:

(2.1) x is single valued and meromorphic in p G R — oo, x is analytic in t, \t\

sufficiently small,

(2.2) any pole of \ lies in 6,

(2.3) at ooa, x(t,p)e~e°,(t'Ka(-p^ is holomorphic,

(2.3') at ooi, x(í,p)e-ei(í'Kl(p)) = 1 + O^1).

PROOF. Let us give a formula for a function \, define the notation in the for-

mula, verify that x satisfies (2.1)-(2.3'), and then prove that any function satisfying

(2.1)-(2.3) is a scalar times x- Let

X(t,p) = C(t)ft(p)f0-1(p)exp ( ¿ /*««(*) j

where

ft(p) = 6(ft(p) - *(6) -K- B(u{t))/2mj,

C-1(t) = ev^ft(oc1)f0-1(oOl)expY, /      wa(t).
a = 2JP°

We will show that C(t) gives the normalization (2.3') at ooi and /t(ooi) is not zero

for \t\ small.

NOTATION. The function p —> $(p) is the Abel map of R into the Jacobian

variety J of R. To construct $ and J let there be given a canonical homology basis

a — (an,..., ctg), ß sa (ßi,... ,ßg), with intersection matrix ot o atj = ßi o ßj =0

and q¿ o ßj = 6ij. Let </> = (</>i,..., <¡>g)T be the basis of holomorphic differentials

with f (¡>j — 6ij. The 2g columns of the matrices / = f <f> and B = j04> of a

and ß periods of (b determine a lattice L = {m + Bn\m, n G Z9} over the integers

Z. The Jacobian variety of R is the compact, commutative, cy-dimensional complex

Lie group J = C9/L. Choose a point p0 G R - oo. The Abel map is defined by

$(p) = P <j>, and $ is extended to divisors by $(pi -\-(- pm) = Xljli /Pj 4>-

The matrix ß of ,9-periods of <b is symmetric with a positive definite imaginary

part. This implies that the theta function

&(z) —  Vj exp(2ni(z,n) +ni(Bn,n))

nez«
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is an entire function of z G C9. One can verify by direct substitution that if

Bj is column j of B and m G Z9 then Q(z + m) = Q(z) and Q(z + Bj) =

exp(—2irizj — mBjj)Q(z).

For any e G C9 the Riemann theta function p —► 0($(p) — e) is either identically

zero or it has precisely g zeros. If p —» 0($(p) — e) is not identically zero and if

Pi + •••+ pg is its zero divisor then p\ + ■ ■ • + pg is nonspecial and

*(Pi + ---+pg) + K = e

(mod L) where K — — I3?=i/Q * ' ^¿ + §(ßil>»••>£«)• ^ is the vector of

Riemann constants.

There exists a unique abelian differential oja (t) of the second kind such that (i)

uja(t) has zero a-periods, (ii) the principal part of uja(t) at ooa is dQa(t,ka) and

(iii) ooa is the only pole of u>a(t). The oja(t) vanish at t = 0 because 6(0, kq) =0

and the only abelian differential of the first kind with zero a-periods is identically

zero. Let oj(t) = YlQ=i wa(t) and let B(oj(t)) = Lw(i) be the vector of /3-periods

of w.

Consider the function p —> fp ujx (t) restricted to a small neighborhood of ooi and

fix a path of integration. This function has the Laurent series expansion 0i (t, /ci ) +

Vi(f) + 0(kx1) for some scalar t —» Vi(t). For any path of integration,

exp futit) = cei(«.«'(p))(i + 0(ier1(p)))«P(^i(*) + 3 • B(Ul(t)))
Jpo

for some integral combination j ■ B(ui(t)) of /3-periods of wi(i).

THE PROPERTIES OF \- The argument of 9 in ft depends analytically on t and

it converges to that of /n as t —► 0. The zero divisor of /o is 6. The zero divisor 6(t)

of ft depends analytically on t and it moves to 6 as t —» 0. The nonspecial divisors

are open in the space of divisors; hence, 6(t) will be nonspecial for |i| sufficiently

small. Since ooi ^ 6 and because ooi is not a pole of the wa(t) (a > 2), the scalar

C(t) is finite and nonzero. The normalization (2.3') of \ follows from the definition

of C(t) and V\(t). Let us show that x is single valued.

The dissected form of R is a Ag sided polygon n?=i ajßjaj~1ßJl vvith the edge

otj (ßj) identified with the edge of q"1 (ßj1)- Let q G olj be identified with q G aj1

and let p G ßj be identified with p G ßj. The identities ([3, p. 285, formulas (1.5)]

with e = e' = 0)

ft(P) = ft(p),

ft® = ft(q)exp(-*iBjj - 2wi(*i(ç) - •,-(«) - Ä»)«-^^*»,

/ w = - ¿ ßiK(0) = -B¿(w(«)), / w = È /  w«(í) = 0,
•/9 a=l ^P a = iya:¿

imply that x is single valued.

UNIQUENESS OF x- Suppose x(t,p) is another function with properties (2.1)-

(2.3). The quotient o = x(tiP)x~1(t,p) is a meromorphic function of p. The divisor

of poles of a is contained in the (zero) divisor of ft; it is nonspecial for |i| small.

The only function with poles in a nonspecial divisor of degree g is constant. Thus

o = o(t).    a
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The following theorem reducesd to (2.2) when 1 = 1. It is the main result of this

paper. There are two keys to its proof: the divisors 6a defined in (2.1) and a nice

generalization of the uniqueness argument in (2.2) due to the referee.

3. THEOREM. Let R be a Riemann surface of genus g. Fix I points oo =

ooi + • • • + ooj. Let A be a positive nonspecial divisor of degree g + I — 1 such

that L(A — oo) = {0}. Choose a local parameter z for a neighborhood of ooQ such

that za(coa) = 0 and let na = z~x. Choose polynomials Qa = 0Q(i,/cQ) in Ka

and analytic in t such that OQ(0, Ka) = 0. The set A = A(A,co,0Q) of functions

x(i,p) such that

(3.1) x is meromorphic in R — oo and analytic in t, \t\ small,

(3.2) any pole of x lies in A,
(3.3) near coQ, x(t,p)e~ea^t,Ka^') is holomorphic,

is a complex linear space of dimension I. Moreover, there is a basis ipa for A such

that, near oo^,

(3.3') <k(t,p)C-«M*.«*(p)) = Sa0 + 0(K~ßl).

PROOF. We apply Proposition (2.2) with 6 = 6a in (1) to obtain a function Xa

with divisor of poles 6a and normalized at ooQ. The function

Í>a(t,p)   =   fa(p)Xa(t,p)

belongs to A and it satisfies (3.3'). It is clear that the ipa (a — 1,..., /) are linearly

independent and therefore dim(A) > /. We have to show that dim(A) is not greater

than I. Let tp be any element of A. There exists a positive divisor A^,(t) such that

(i>(t, •)) = A^(t) — A. We have A^(t) = (ip(t, -))o unless a zero of tp cancels a

point of A at some instant in time. In the latter case we have A^(i) = (ib(t, -))o +

(cancelled points of A). We have

(tpc) = (fa) + (Xa) = (fa) + (Xa)o ~ ¿a

= (fa) + (Xa)0 - (A + (/«) -00 + 00«)      (by (1))

= (Xa)o + (OO - COQ) - A,

(ip/i)i) = (t/0 - (V>i) = A^(i) - ((xi)o + (oo - oo«))    and

W>a/lPl) = (tpa) - (ll>l) = (Xa)o + OOl - ((Xl)o + 00«).

These formulas show that any pole of the I + 1 meromorphic functions rp/ipi,

V'i/V'i = 1) ^/V'l» • • • iV'i/V'i lies in (Xq)o + oo - ooi, a nonspecial divisor of

degree g + I — 1. The I + 1 functions are, by the Riemann-Roch theorem, linearly

dependent.    D

Note. The referee has informed me of the following characterization of the im-

portant divisor ¿V It is the unique integral divisor of degree g such that

•(A)-*(oo-oo«) = #(«.).

Note. Let S be an integral nonspecial divisor of degree g supported in R — oo

and let pi,..., pi _ i be distinct points in R — oo. By the Riemann-Roch there exists

a nonconstant function gj G L(6 +Pj) such that Qj(oOj) = 0. Since 6 is nonspecial,

gj has a pole at p3 and it is unique up to a constant factor. Let gi = 1. The /

functions gi,... ,gi are a basis for L(6 + pi + ••• + Pi-i) and the divisor

A d=¿ + (pi + ---+p*-i)
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satisfies the hypothesis of Theorem 3 (i.e. L(A) = {0}) if and only if the determinant

of the / x / matrix (gj(ook)) is nonzero. Thus we have a way of searching for divisors

A satisfying L(A — oo) = 0. The method is probably not practical unless R is

hyperelliptic because our explicit formulas for gj are quite unmanageable even for

a trigonal R.
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