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PERFECT CONGRUENCES ON A FREE MONOID

MARIO PETRICH AND C. M. REIS

ABSTRACT. Perfect congruences on a free monoid X* are characterized in

terms of congruences generated by partitions of X U {1}. It is established that

the upper semilattice of perfect congruences if V-isomorphic to the upper semi-

lattice of partitions on Xu{1}. A sublattice of the upper semilattice of perfect

congruences is proved to be lattice isomorphic to the lattice of partitions on

X.

Introduction and summary. Free monoids derive their importance from the

theory of formal languages. Their homomorphic images constitute the class of all

monoids, so that their congruences give rise to isomorphic copies of all monoids.

In view of the richness of a free monoid, any attempt at a reasonable classification

of its congruences appears to be a daunting, not to say impossible, task. The

classification of a very restricted type of congruence with some information on how

these fit in the lattice of all congruences may, however, be possible.

A congruence p on a monoid M is said to be perfect if the product of any two

p-classes as complexes is a full /»-class. (For related material see [2, VII 5.21 and

VII 5.24].) In this paper we investigate the family PC(X') of perfect congruences

on a free monoid X* on the arbitrary alphabet X with three main goals in view,

viz., to give an explicit description of such congruences; to determine the position

of PC{X*) within the lattice C{X*) of all congruences on X*; and to establish

properties of the partially ordered set PC(X*). We show, in particular, Theorem A,

that p is perfect if and only if p is the congruence generated by the restriction of p

to X U {1}. This characterization leads naturally to Theorem C wherein we prove

that PC{X*) is a complete V-subsemilattice of C{X*) which is V-isomorphic to the

complete V-semilattice II(X U {1}) of all partitions of X U {1}.

Throughout the paper, for any congruence p on X* and any subset T of X*, p\r

will denote the restriction of p to T and T* will denote the monoid generated by

T. If 7T is an equivalence relation on T, then n* will denote the least congruence

containing ■k and wk the 7r-class of u. The difference of two sets A and B will be

denoted by A\B.
As a general reference we recommend G. Lallement's book [1].

We start by proving a sequence of seven lemmas thus setting the stage for the

proof of Theorem A.

It will be convenient to introduce the following:

Notation. For any Ac X* and w € X*, let wa be the word obtained from w by

deleting all letters from A which occur in w.
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Now let 7T be a partition of X U {1} and let A = Itt fl X. Define a relation p„ on

X'by
upitV <=>• ua{tt\x\a)*va-

Clearly p^ is a congruence on X*. It is, as the following lemma shows, the

congruence on X* generated by n.

LEMMA 1.   For any partition ■n of Xö {1}, we have p^ = n*.

PROOF. Let b,c e X U {1} and suppose that ¿>7rc. If b, c E A, then 6a = 1 =

ca, whence bA{ir\x\A)*cA and thus bp^c. If b, c £ A, then b = bAir\x\AcA = c,

whence bA{n\x\A)*cA and thus bp^c. Therefore 7r Ç p„\x\A- It follows that 7r* Ç

{Ptt\xli{1})* Q Pit-
Conversely, assume that up„v for u,v G X*. Then ua(tt\x\a)*va, whence

ua^*va- But clearly utt'ua and vk*va- Therefore utt'v and thus p„ Ç 7r*.

The next two lemmas establish the sufficiency of the result: p is perfect if and

only if p is the least congruence containing p\xu{i}-

LEMMA 2.   Let n be a partition of X.  Then it* is perfect.

PROOF. Let en* ab so that

C = U\SiVi

Ulf1^1 = U2S2V2

U2tïV2 = U3S3V3

Un— ltn— l^n— 1 — UnSnVn

UntnVn = ab,

where s¿7rí¿ for all i. We wish to find a',b' G X* such that c = a'b',a'-K*a,b'-K*b.

The proof is by induction on the length of the above sequence. The case of length 1

is trivial. Assume the statement for length n true and suppose we have the situation

as above.

By equidivisibility in X*, the last equation above implies one of the following

two cases:

1. a = u'n, b = u'^tnVn, where un = u'nu'n,

2. o = untnv'n, b = v'¿, where vn = v'nv'¿.

Suppose the first case occurs; the second case is handled symmetrically. By the

induction hypothesis, there exist a",b" such that c = a"b",a"n*u'n,b"n*u'n'snvn.

Hence o"7r*a and b"/K*u'Jlsnvn7T*u'ñtnvn = b with c = a"b", as required. This proves

that (a7T*)(67r*) = {ab)it* as sets and 7r* is perfect.

LEMMA 3.   Let n be a partition of Xö {1}.  Then p^ (— ir*) is perfect.

PROOF. Let cpnab and A = {x e X|x7rl}. Then c = U1V1U2V2■ ■ ■ unvn for

some Ui G A*, Vi £ (X\A)* so that ca = «1V2 • • • vn. Further, by the definition of

pn, ca(7t|x\a)*ûu6a- By Lemma 2, there exist a',b' G (X\A)* such that

cA = a'b',    a'(7r|xvO*aA,    b'(jr\x\A)*b.

It follows that

a' = v1v2 • • • v'i,       y - w"rç+i • • • vn,
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where u¿ = v\v'l for some 1 < % < n. Let

a" = U1V1U2V2 ■ ■ ■ Uiv'i,        b" = v"ui+1vi+1 ■ ■ ■ unvn.

Then a"A — a', b"A — tí', c = a"b", and a"pTa'A = a'pnaAPva and similarly tí'p^b.

Therefore (ap7r)(6/9w) = {ab)p^ as sets and p^ is perfect.

LEMMA 4. Let p be a perfect congruence on X* and A = lpC\X. Then \p = A*

and for each beX, bp = A* (bp H X)A*.

PROOF. We will write v, for the />-class containing u G X*. First let u,v G X*

be such that uv G Ï. Then uv — Ï as elements of the quotient X* /p and hence

also as subsets of X* since p is perfect. In particular, 1 = xy for some x G u~ and

y G v whence x = y = 1 so that û~ = x — 1 — y = v. But then u,v G I. A simple

inductive argument will show that if U1U2 • • • un G ï, then ui, U2,..., un G 1 for all

Ut,U2,...,Un GX*.

Since 1 is a submonoid of X*, it follows that A* Ç 1 where A* is the (free) monoid

generated by A. Conversely, if w — xi X2 ■ ■ ■ xn G 1, where xi,X2,. ■ ■ ,xn G X, then

by the above, xi,X2,. ■. ,xn G ï, that is, xi,X2,- ■ ■ ,xn G A whence w G A*.

Consequently l Ç A* and equality prevails.

Now let a G X\A and suppose that uv Gä where u,v G X*. Then, as above,

ïï v = ä as subsets of X* whence a = xy for some x Gu~ and y G v. Since a G X, the

equation a = xy implies that one of x, y is equal to 1 and the other to a. It follows

that one of ü, v is equal to T and the other to 0. A simple inductive argument will

show that if U1U2 • • • un G a, then exactly one of ü"i,Ü2,... ,ü„ is equal to ö and

the remaining ones are equal to 1 for all ui, U2,..., un G X*.

With the same o, let B = a 0 X. Clearly A*BA* Ç a. Conversely, if w =

X1X2 • • • xn G a with xi, X2,..., x„ G X, then applying what we have just proved,

we obtain that some x¿ G B and the remaining Xj are in A and hence w G A*BA*.

Therefore ä = A*BA*.

LEMMA 5. With the notation and hypothesis of Lemma 4, X*/p is free on

(X\A)p.

PROOF. We will again write ïï for up. Let a,b G X\A and u,v G X* be such

that au = tío. By the formula in the preceding paragraph, we have au = W\b'u>2y

for some w\, IU2 G A*, tí G b D X, and y G v. Since a,b G X\A, the equation

au = w\tíw2y implies that w\ = 1, a = b', and u = u>2y. Hence ä = b. Clearly

u)2y G v which, together with ü = W2y, implies that u = v. A simple inductive

argument shows that if äiS2 • ■ ■ Ss = 6162 • ■ ■ bt, where 01,02,..., a3,61,63,... ,&t G

X\A, then s = í and 5¿ = 6¿ for ¿ = 1,2,..., s. Therefore X* /p is a free monoid

on the set {X\A)p = {â|a G -X\y4.}.
The next lemma establishes the necessity of the result quoted before the state-

ment of Lemma 2.

LEMMA 6. Let p be a perfect congruence on X* and let ix = p|xu{i}- Then

p = n*.

PROOF. Let the notation be as in Lemma 4 and its proof. Then A C In Ç l7r*

and thus A* Ç l7r*.

Any u,v G X* can be written in the form

u = uiaiu2a2 • • • usasus+i,        v — vibiv2b2 ■ ■ ■ vtbtvt+i
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for some u¿, v¿ G A* and a¿, 6¿ G X\A. Assume that upv. Then

5i52 • • -a:s = 6162- • -bt.

By Lemma 5, X*/p is a free monoid on the set (X\A)p so that we must have s — t

and a~i — 6¿ for i — 1,2,..., s. It follows that a¿p6¿ and a¿, 6¿ G X\A which yields

Oi'Trbj, whence atir*bi for ¿ = 1,2,..., s. Consequently aiü2 ■ • ■ as7r*tii 62 •■•bs. By

the above, A* C lw* which gives

uiOitt2a2 • ■ • uaasua+iTT*vibiv2b2 ■ ■ ■ vsbavs+i,

that is to say wk*v. Therefore p Ç 7r*; the opposite inclusion follows by the mini-

mality of 7T*, and thus equality prevails.

The following simple result will be needed in the proofs of Theorems A and C,

and is of some independent interest.

LEMMA 7.   Let -k be a partition of XL) {1}. Then 7r*|xu{i} = '•

PROOF. For any subset T of X*, let Pt denote the syntactic congruence of T.

Recall that Pt is defined on X* by

uPTv if xuy G T ■<=> xvy G T       (x, y G X*)

and that it is the greatest congruence on X* saturating T. Let A = Itt, B be a

7r-class distinct from A, C — A*BA*, and p, q G X*.

We verify next that Pc has classes: C, A*, (C UA*)C.

For u G C, we have puq G C if and only if p,q G A*. It follows that C is

contained in a Pc-class and thus, by saturation, C is a Pc-class.

For u G A*, we have pug G C if and only if p G C and q G A* or p G A* and

q G C. It follows that ^4* is contained in a Pc-class. If u G A*, uPqv, and b G B,

then ub G C so that vbG C and hence u G A*. Thus Pc saturates A* and therefore

A* is a Pc-class.

For u G X*, iï puq G C, then either u G A* or u G C. By contrapositive,

(CU A*)c is contained in a Pc-class. It follows from above the Pc saturates Co A*

and so does its complement. Consequently (C U A*)c is a Pc-class.

Next we show that P4* has classes: A*, (A*)c. For u G A*, we have pug G A* if

and only if p, g G A*. Hence A* is contained in a Pa--class and thus, by saturation,

A* is a Pa«-class. If u £ A*, then puq <£ A*. It follows that (A*)c is contained in

a Pa*-class so, again by saturation, (A*)c is a Pa--class.

Note that C n X = B and A* n (X U {1}) = A. Moreover, if P' is a 7r-class

distinct from A and P, we also have (C U A*) n A*B'A* = 0. It now follows that

the congruence p — Pa- H (P1-Pa*B'A*), where P runs over all 7r-classes distinct

from A, has the property that p|xu{i} = n- Therefore, by minimality

7T* = (P|XU{1})* Ç P,

which implies that 7r*|xu{i} Q p\xu{i) — 7r- Consequently 7r*|xu{i} Q * and the

opposite inclusion is obvious.

The length of a word w over X is the number of variables in X occurring in w,

to be denoted by lg(tw). An endomorphism <f> of X* is length-decreasing if for any

w G X*, lg(u>) > lg(w</>). Clearly, an endomorphism <j> of X* is length-decreasing if

and only if X<j> Ç Xu{l}. For any function (f>, denote by (j> the equivalence relation

induced by it.

We are now ready for the main result of the paper.
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THEOREM A.   The following conditions on a congruence p on X* are equivalent.

(i) p is perfect.

(ii) p = Ptt for some partition n of X U {1}.

(iii) p = P.* for some family Z of relations of the form a — b,a — 1 where

a,bGX.
(iv) p is induced by a length-decreasing endomorphism of X*.

(v) P = {p\xu{i})*■

PROOF, (i) implies (ii). This follows directly from Lemmas 1 and 6.

(ii) implies (iii). Putting a — b if anb and o/l, and a — 1 if 07rl, we obtain

a family Z of relations. Simple reflection shows that 7r* = Z* which in view of

Lemma 1 yields p„ = Z* and thus p = Z*.

(iii) implies (iv). Define an equivalence relation 7r on X U {1} be specifying the

7T-classes as follows:

Iff = {1} U {a G X\a — 1 is a relation in Z},

and for a G X\ln,

an = {a} U {b G X\a = b is a relation in Z}.

Let <t>: XU{1} —+ A"U {1} be any mapping which induces n and for which l<f> = 1.

Extend 0 to an endomorphism <p* of X*. Since X4>* = X<p Ç XU {1}, 4>* is length-

decreasing. Further, since (f>* is an extension of <j>, we have <^>*|xu{i} = <j> = n. By

Lemma 7, we have 7r*|xu{i} = ^ and hence by minimality, we have rr* Ç <j)*.

In order to prove the opposite inclusion, let x, y G X* be such that x<j>*y. Then

x = X1X2 • ■ • xm and y = yiy2 ■ ■ ■ yn for some x¿, yi G X so that

(1) (xi^)(x2<A) • • • (xm</>) = (yi<j>)(y2<f>) ■ ■ ■ {yn(¡>).

Let

1= {ti,t3,,...,tp} = {i\xi<p¿ 1},

•/ = {jl,32,   •,jq} = {j\yj<t> 7¿ 1}-

with t'i < «2 < " • " < ip and ji < J2 < ■ ■ ■ < jq\ this gives by (1)

(2) {xhWxitt) ■ ■ ■ {xlp4>) = {yn4>){yn4>) ■ ■ ■ {yjq4>).

It follows that p — q and x,t</> = yjt4> for t — 1,2,...,p. But then Xjt7rj/Jt and thus

Xitn*yjt for í = 1,2,... ,p. In addition, if i ^ J and j ^ J, then x¿</> = 1 = yj<f> so
that x¿7rl7r?/j, whence Xiiv*ln*yj. Now (2) implies that

x = X1X2 • • • xm7r*2/iy2 ■■■yn = y

which proves that 0* Ç 7t*. Since p = n*, we obtain p = n* = <f>*.

(iv) implies (v). Let p be induced by a length-decreasing endomorphism <f> of

X*. Let 7T = p|xu{i} — </>lxu{i}- The same argument that was used to show that

7T* = <p* in the above proof shows that 7r* = p in the present case. Consequently

P = {p\xu{i})*, as required.

(iv) implies (i). This is a direct consequence of Lemma 3.

Perfectness of the congruence induced on X* by an endomorphism of X* is

treated in the next result.
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THEOREM B. Let (p: X* —> X* be an endomorphism. Then <j> is perfect if and

only if X<p\{l} is a code.

PROOF. Necessity. Let U1U2 • • • um — v\v2 • ■ ■ vn, where u¿, V{ G X(fi\{l}. There

exist Xi,yi G X such that x¿0 = it, for i — 1,2, ...,m and yi<p — V{ for i —

1,2,. „, n. Hence (xix2 • ■ • xm)<j) = (y1y2 ■ ■ ■ yn)<p and thus xix2 • • • xm$y1y2 ■ ■ ■ yn.

Since <p is perfect, by Theorem A there exists a length-decreasing endomorphism ip

of X* such that <p — ïp. Hence £1X2 • • • xmV>yi2/2 • ' ■ Vn which implies that

(x1-0)(x2V') • • • (xmVO = (yiV0(j/2V0 • • • {ynip)-

If, e.g., Xiip = 1, then Xitpl so x¿01 and thus u¿ = x¿0 = 1, a contradiction. Thus

Xitp G X for i = 1,2,..., m and yi%p G X for i = 1,2,..., n. The above equation

then gives that m = n and x¿V = Viip f°r z — 1,2,..., n. But then X{<p = yi<p for

i = 1,2,... ,n and hence u¿ = w¿ for î = 1,2,... ,n. Therefore X<j>\{l} is a code.

Sufficiency. By Theorem A, if suffices to show that <p = {<P\xu{i})* ■ Let tt =

0|xu{i}- Then 7r*|xu{i} = tt by Lemma 7 and thus 7r* Ç (p by minimality of 7r*.

For the opposite inclusion, let x, y G X* by such that xcpy. Then x</> = yep and

x = xix2 • ■ • xm, y = yiy2 ■ ■ ■ yn for some x¿, j/¿ G A". Let

/ = {h,î2> • • • ) ip) = {i\xi<p t¿ 1}    with ii < Í2 < ■■■ < ip,

J = {J1J2, ■■■Jq} = {j\y3<P Í 1}      With jx < J2 < ■ ■ ■ < jq.

Hence

(3) x<p = (x1<j>)(x2(p) ■ ■ ■ {xm(p) = (x¿1<A)(x¿2^) • • • {Xip4>),

(4) yep = {y\<P){y2<P) ■ ■ ■ {yn<P) = {y^iyjA) ■ • • {yjq4>),

where Xik(p,yjk(p G X<p\{l}. The right-hand sides of (3) and (4) being equal, the

hypothesis implies that p = q and Xikcp = yjk<p for k — 1,2,... ,p. But then XiknyJk

so also Xikn*yjk for k — 1,2,... ,p. If ¿ ̂  / and j ^ J, then x¿0 = 1 = x.,</>, whence

XiTclnyj and thus Xiit*ln*yj. The equality of (3) and (4) thus yields

X = XiX2 • • • Xm7T*2/i2/2 • •   Vn = V,

as required.

In the remainder of the paper, we consider the partially ordered set of perfect

congruences.

THEOREM C. Let Tl{X U {1}) be the lattice of all partitions of X U {1} and
PC{X*) be the poset of all perfect congruences on X*, both ordered by inclusion.

Then PC(X*) is a complete V-sublattice of the lattice C(X*) of congruences on X*

and the mapping

X:n^n*        (tt G U{X U {1}))

is a complete V-isomorphism ofU(XU {1}) onto PC(X*).

PROOF. Let {7rQ|a G /} Ç n(A" U {1}). For any ß G /, we have nß Ç \/na,

whence ttJ Ç (\Jna)* so that V71"« Q (V71")*- Conversely, \Jna Ç \Jn*, implies

\l^aQ (\jK)\xu{i}, whence

(V*-)'= (VOlxu{i}
ÇV<
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We have proved

(5) y<=(y*«y.

Now let {pa\ct G /} be a family of perfect congruences on X*. Letting 7rQ =

Pa\xu{i}, by Lemma 6, we obtain pa — 7r* for each a G I. On the other hand,

Lemmas 1 and 3 yield that (\/ 7rQ)* is perfect. Hence formula (5) implies that \J pa

is perfect, that is to say, PC(X*) is a complete V-sublattice of C(X*). In addition,

formula (5) shows that x is a complete V-homomorphism. Injectivity of x is a

consequence of Lemma 7 while surjectivity follows from Theorem A.

PROPOSITION. 7/ \X\ > 1, then the mapping x in Theorem C is not a fl-

homomorphism.

PROOF. Let a,b G X with a t¿ b. Let a (respectively ß) be the partition of

X"U {1} which identifies only a (respectively b) with 1. Then for any u, v G X*, we

have

upa fi PßV <=^ U{a} = V{ay,   U{6} = V{by.

Hence par\ pß ^ e; for example abpa f] pßba. On the other hand, panß = pe = e,

the equality congruence. Therefore pa n pß ^ panß-

We observe in passing that the above example shows that, in general, the inter-

section of two perfect congruences is not necessarily perfect.

EXAMPLE. Let X = {a, b}, with partitions

e:{a},{b},{l},        a:{a,l},{6},

0: {6,1},{a},    T{a,6},{l},    w:{o,6,l}.

Define 9 on X* by udv •<=>- u and v have the same number of occurrences of a

and 6. Then the sublattice of C(X*) generated by the V-subsemilattice of perfect

congruences has the following diagram:

w = pw

Pa/      Pß       >/>-»

£ = Pe

There is a sublattice of PC{X*) with the property that \ restricted to it is a

lattice isomorphism. In order to treat this case, we first prove an auxiliary result.

LEMMA 8.   Let {n^a G A} be a family of partitions of X.   Then (fl^a)* =

PROOF. For any ß G A, we have P|7rQ Ç -Kß and thus {f]na)* Ç tt^, whence

(Hfa)* Q(~]^â- Conversely, let u = O1O2 • • • am and v = 6162 • • • 6„, where üí,6¿ G

A" and assume that u On*, v. Since tt* = <r*, where ctq is the partition of XU {1}

with 1ctq = 1 and aa\x = na, we may apply Lemma 5 which then yields that

m = n and a¿7r* = 6¿7r* for i = 1,2,..., n and a G A. But then also a¿7ra6i for

all a G A which gives a¿ f]na 6¿ for ¿ = 1,2,...,n. Consequently o¿(P|7ra)*6¿ for

t = 1,2,... ,n. It follows that u (n^a)* v which proves that f]^ Ç (f\TTa)* and
equality prevails.
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THEOREM D. Let U(X) be the lattice of all partitions of X and Q.C{X) be the
poset of all perfect congruences p on X* such that lp = 1, both ordered by inclusion.

Then QC{X*) is a complete sublattice of the lattice C(X*) of congruences on X and

the mapping

(p-.n-^n*        (ff€lI(X))

is a complete lattice isomorphism ofH(X) onto QC(X*).

PROOF. First note that

xp:n->n'        (tt G Il(X)),

where n' G Tl(X U {1}) with l7r' = 1, 7r'|x = :ff, is a complete lattice isomorphism

of n(X) onto the sublattice of U(X U {1}) consisting of the partitions o such that

1er = 1. The mapping \ in Theorem B sends partitions a of X U {1} onto perfect

congruences a* with the property la* = 1 in view of Lemma 1. The same type

of statement is also true about x_1- Hence Theorem B and Lemma 8 yield that

(p = ipx is a mapping with all required properties.
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