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ON THE NUMBER OF SQUARES IN A GROUP

LUDOMIR NEWELSKI

ABSTRACT. We show that there is a connection between the number of

squares in a group and the cardinality of the group. For example, if a group

has countably many squares and i2 = e implies x = e, then its cardinality is

bounded by 2N° and this bound can be obtained.

0. Introduction. This paper gives a negative answer to the following conjec-

ture: If in a group without elements of order 2 there are only countably squares,

then this group is countable.

In all the paper we deal with infinite groups only. In §1 we prove that if k is an

infinite cardinal and a group G without elements of order 2 has k many squares,

then the cardinality of G is bounded by 2K. The proof is technical and uses the

Erdös-Rado theorem. In §2 we construct an example of a torsion-free group G of

power continuum with only countably many squares, which according to the results

from §1 is the best possible. The construction easily generalizes (Corollary 2.5) to

the case of A-many squares where A is an arbitrary infinite cardinal; however in this

case we are able to construct a group whose cardinality is that of a linear ordering

with a dense subset of cardinality A.

One could ask if the above results easily generalize when squares are replaced by

higher powers. For Ac > 1 let Gk = {xfc: x G G}. When dealing with fcth powers,

the natural assumption on a group is that xk = e implies x = e. After the first

version of this paper was written, Professor G. Higman pointed out to the author

the following:

(1) If we want to prove for some / satisfying /(/c) > 2K that, for any G, \G\ <

f(\Gk\), then w.l.o.g. we may assume that Gk is contained in the center of G.

(2) If Burnside's group of exponent k with 2 generators is finite, then for any G

satisfying xk = e —> x = e we have \G\ < 2'G L

Thus (2) provides us with another, maybe more algebraic, proof of Theorem 1.3,

and gives us an estimation for G in case k = 2,3,4,6. However, (1) enabled

the author to strengthen his previous estimations and prove that \G\ < 2^G ' for

fc = 2n3m where n > 0 and m = 0 or 1. For other fc's the question of whether

any estimation exists remains at present open. However, at least we cannot prove

that for some k > 1, for any G, \G\ = \Gk\, as the construction from §2 generalizes

to the case of fcth powers for any fc > 2. In contrast to the situation with infinite

groups, we trivially have that if Gk is finite and G satisfies xk = e —► x = e, then

G = Gk. Notice that constructing for some fc a group G such that \G\ > 2'G I (and

xk = e —> x = e holds) would enable us to prove that Burnside's group of exponent

fc is infinite.
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We use the standard set-theoretical notation. So, for example, <U¡X denotes the

set of all finite sequences of elements of X. For a finite sequence ~ff', t(lf ) denotes

the length of t].

1. Negative results. Throughout this section we assume that G is a group

without elements of order 2.

FACT 1.1 (A SPECIAL CASE OF THE ERDOS-RADO THEOREM, SEE [1,

3]). Let u be an infinite cardinal. Assume that / is a binary function on (2M)+

such that for every a < ß < (2,t)+ we have f(a,ß) G p. Then there exists 6 < p

and A Ç (2*4)"1", \A\ = u+, such that, for every a, ß G A, if a < ß, then f(a, ß) = 6.

LEMMA 1.2. Assume that a,b,c,d G G, (ab)2 = (cd)2, (be)2 = (bd)2, and

a2 = 62 = c2 = d2.  Then a = b and c — d.

PROOF. We have 6c6c = bdbd, so c6c = dbd. Multiplying this equation on the

right side by d and on the left by c we obtain c26cd = cdbd2. From the assumptions

it follows that c2 commutes with b,c,d, and equals d2, so we get 6cc¡ = cdb. Now

(o6)26 = (cd)2b = b(cd)2 = b(ab)2. So (a6)26 = 6(a6)2 = 6a6o6 = (6a)26, hence

(a6)2 = (6a)2. From this we get

(ab)4 = (ab)2(ba)2 = ababbaba = b2b2a2a2 = a8.

Hence (a_2o6)4 = e. But in G there are no elements of order 2, so a~2ab — a~1b —

e. We conclude that a = b. Repeating the above proof for c, d, a, b instead of

a, 6, c, d, we see that c = d.    D

THEOREM 1.3.   Assume that G is an infinite group.  Then \G\ <2^G I.

PROOF. By the remark in the Introdution we can assume that G2 is infinite.

Let \G2\ = p. Suppose that \G\ > 2>i. Then we can find in G pairwise distinct

elements {aa: a < (2^) + } such that a2 = a2, for every a < ß < (2M)+. For

a < ß < (2")+ let f(a,ß) = (aaaß)2 G G2. From Fact 1.1 it follows that we can

choose an infinite set A Ç (2M)+ such that for a, ß, a', ß' G A if a < ß, a' < ß' then

f(a,ß) = f(a',ß'). W.l.o.g. we can assume that {a„: n < w} Ç A. So we have

ao — a\ — °2 = a3, (aoOi)2 = (o-20.z)2, and (a^)2 = (aia^)2. From Lemma 1.2

we conclude that ao = ai and a2 = 03, a contradiction.    D

DEFINITION 1.4. For a given complete theory T in a first-order language L,

a formula <p(x;y) of L is stable in T if for every model M of T there are < ||M||

ip-types over M. If >p is not stable, we call it unstable.

For basic results on stability, see, for example, [2, or 3]. If G is a group, then

we say that <p(x;y) is stable in G instead of "stable in T — Th(G)."

THEOREM 1.5. Assume that G is an infinite group. If ¡p(x; y) = xy — yx is

stable in G, then \G\ = \G2\.

PROOF. If not, let |G2| = p, and choose {aa : a < p+} Ç G such that a2 = a2ß

for a < ß < p+ (p > «0 by Theorem 1.3).

By induction one can easily construct three sequences {6„}„<w, {c„}n<UJ Ç G

and {Bn}n<U], Bn Ç G for every n, such that

(1) 60 = a0,

(2) bn G Bn\Bn+1, Bn+1 Ç Bn Ç {aQ : a < p+} for n < u>,

(3) \Bn\ = p+,
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(4) if c, d G Bn+1 then (6„c)2 = (6nd)2 = cn G G2.

Now if there are n < m such that C2n = ¿2m, then taking 62„, 62n+i> 62m, 62^1+1

we see that

(62n&2n+l)    = (62m62m+l)   , (62n+l62m+l)    = (62n+l62m)

and
U2     ,_ h2 _ l2       _ h2
°2n — °2n+l — °2m — °2m+l-

So Lemma 1.2 leads to a contradiction. Thus for every n < m, C2n t'1 ¿2m- From

this we get that, for n ^ m, (64n64rn)2 = (64n64m+2)2 holds if and only if n < m.

But (64n64m)2 = (64n64m+2)2 is equivalent to 64n64m64m+2 = 64m64m+264„, so

to £>(64n;64m64m+2). It follows that using <p(x;y) we can define on some infinite

subset of G a linear order. From the facts proved in [3] we can easily deduce that

ip(x; y) is unstable in G.    D

2. An example. In this section we shall construct an example of a group

G of power continuum, without elements of order 2, with only countably many

squares. From Theorem 1.3 it follows that such an example is the best possible for

a countable G2, i.e. \G\ is maximal possible.

The construction consists of defining a suitable normal subgroup Hq of a free

group Go of power continuum. G will be the quotient group Gq/Hq. Let Go be the

free group generated by the set of letters {n: n G w2}. We identify finite sequences

of elements of w2 (i.e. elements of <w("'2)) with appropriate words—element of Go-

Recall that fc = {i: i < fc} for fc G w.

DEFINITION 2.1. For every if G <u(u2) we define li(Tf) G <"(<u;2) as

follows: Let ¿(if) = n. For i < n let

fc¿ = max min{i + 1 : t < u Sc lf[i] \ t / if [j] \ t}.

Here min0 = max0 = 0.   Define   h (if)[i] = Tf[i]  \ ki for every i < n, and

i(h(lf)) = n.
We define now a subgroup Hq of Go as follows:

DEFINITION   2.2.    (1) R = {(!f)2(V)-2: if, ~v   G  <w(w2)    h    ~h(lf) =

t(T?)}.
(2) Let Hq be the normal subgroup of Go generated by R, and let G = Gq/Hq.

For notational simplicity we treat words in Go as names for their images in G

under the canonical projection.

THEOREM 2.3. \G\ = 2Ho, \G2\ = N0 and in G there are no elements of order

2.

We prove Theorem 2.3 in a series of lemmas.

LEMMA 1.   Ifr\,vG{Ji2,r\±v then, in G,n^u.

PROOF. Consider a homomorphism /: Go —► Z2 such that f(n) = 0 and f(u) =

1. Then H0 Ç Ker /. 0 ¿ 1, so, in G = Gq/Hq, n^v.   G

Notice that if r¡, v G "2, rj ^ v, then h ((n)) = h ({1/)) = (0), so in G we have

n2 — v2. Denote this common square by a, i.e. for all n G w2, r}2 = a in G.
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LEMMA 2. Every element of G is equal to aklf for some fc G Z and if G

«"(w2) such that, forO<i< t(lf) - 1, Tf[i\ ¿ if [i + 1].

PROOF. Notice that for n G w2, in G, n^1 = a~ln; nn — a; and a,ct~l

commute with v,v~x for every u G w2.    D

Lemma 3. |G2| < N0-

PROOF. The value of (aklf)2 = a2fe(lf)2 depends only on fc and á (if), so

there are only countably many possibilities.    D

LEMMA 4.   InG: If (aklf)2 = e, í/iera afelf = e.

PROOF. We prove it by induction on |Rng(lf)|. We may assume that if is

such as in Lemma 2.

(a) If |Rng(lf )| = 0 then if = 0, and we have (ak)2 = a2k = e.

(b) If |Rng(lf )l — 1 then if — (n) for some n G w2, so we have

(aklf)2 = a2knn = a2k+1.

Consider now the homomorphism /: Go —> (Z, +), such that, for every n G "2,

f(n) = 1 in Z. Then clearly Hq Ç Ker/, so whenever f(x) ^ f(y) in Z, x ^ y

holds in G. (For simplicity we do not distinguish explicitly between / and the

induced homomorphism f:G —* (Z,+).) So in case (a) we get f(a2k) = 4fc — 0,

hence fc = 0. Similarly, in case (b) we get 4fc + 2 = 0, a contradiction.

(c) Assume that |Rng("rf)| = n > 2, and for all a1!? such that IRngCP*)! < n,

Lemma 4 holds. Assume that aklf)2 — e. We have to prove that aklf = e.

Let us choose two letters n, v G Rng(7f ) such that

i(h((n,vW\) = i(X((n,v))\\\)

is maximal possible. If there are two or more such pairs n, v G Rng(~jf ), we choose

one of them. We prove that there is an inner automorphism of G which maps

aklf to some aLlf i such that (a^lf i)2 = e and |Rng(~if %)\ < n. Clearly by the
induction hypothesis this will finish the proof of Lemma 4.

CLAIM A. If If = "jfo~(»7)'~'"»fi~(»?)~"»f2, and V," £ Rng(lfi), then, in G,
rjlfin — vlf \v.

PROOF OF  CLAIM A. Notice that from the maximality of the choice of n,u

and from the definition of h it follows that

h (If>i'~'(v)) = hÇrfi^iv)).

So in G, ifinlfiT) = if \vlf\v. Multiplying on the left side by (if i)_1 we see
that Claim A holds.

From Claim A follows at once

CLAIM B. If If = !fo~(rç)~lfi'~'(ty)~lf2~(^)'"lf3 and r\,v £ Rng(lfi~lf2)
then, in G, If = lfo^(v)^lf i~(v)~lf2~(ri)^lf$.

PROOF. Apply Claim A twice to get

rylf ivlf 2V = nlf \n~lf 2n — v~rfii>Jf2V-
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From Claim B it follows that if equals in G some other word if' such that if we

delete in if' the fragments not containing v or n, then we obtain a word of the

form

(1) r)2tl? or

(2) v2l1?, where ~u = (y, r¡, u, n,... ) or 1/ = (n, v, n, v,... ) and i G Z, ¿ > 0.

By Claim A we can replace n2i by v2t. There are two cases.

Case I. l(T?) is odd.

In this case the first and the last member of T? are the same. Assume w.l.o.g. that

~v = (v)'~~l/''~'(v) and (2) holds. Let if' = ifo^(y)^lf x'"(v)^lf2 where v, n $

Rng(lfo'-,lf2)- Then the inner automorphism <p defined by

ip(x) = Vlf 2x(v!f 2)~l

maps aklf' onto akvlf2lfo^lfi — aklf".

Now when we delete in if" all letters distinct from u, n, we obtain the word

u2i4~2l?', and ¿(V) = t,(~v) —2. Hence, iterating this process finitely many times,

we get the word a1 if 1 (after possible reductions according to Lemma 2) such that

Rng("rf 1) Ç Rng(lf) and w $. Rng(lf 1) or v £ Rng(lfi), so in this case the
induction step is done.

CASE II. t(~u) is even. If 1? — 0, we finish, for then n £ Rng(lf') or v ^

Rng(lf') and Rng(lf') Ç Rng(lf). So assume that ~u ^ 0.
Let us consider now the free group Gi generated by free generators a and 6.

Let H\ be the normal subgroup of G\ generated by the set {a2,62}, and let G2 =

G1/H1. The elements of G2 can be written down in a very simple form, namely

as finite sequences of the form ababab • • • or bababa ■ ■ ■ (the length clearly may be

even or odd), and any two such sequences are equal in G2 iff they are equal.

We define some homomorphism /: Go —* G2 (it suffices to define F(p) for every

p G -2).
(i) If h((r¡,u))[0] ç p, then let f(p) = a.

(ii) If á((?7,^))[l] Ç p, then let f(p) = 6.
(iii) If neither (i) nor (ii), then let f(p) = e.

Now, from the definitions of h and Ho it follows that Ho Ç Ker/. From the

choice of n, v it follows that f(aklf') is equal to f(~v), and f(~u) equals (a6)1 or

(6a)1 for some t > 0.

But we know that, in G, (anlf')2 = e, so, in G2, [(a6)1]2 = (a6)2t = e, a

contradiction, because, in G2, (a6)2t = e only when t = 0.    D

Lemma 5. |G2| >N0.

PROOF. This follows immediately from Theorem 1.3, but we can give also

another, more direct proof. For no,r¡i G w2, r/o ^ n\ let 0(770, r?i) be n0 \

min{fc: r?0[fc] ̂  rn[k}}. Now if nQ ^ í?i, vq ¿ vx, r)i,vx G "2 and g(no,ni) ^

g(uo,u\), then by choosing a suitable homomorphism /: Go —* G2 with f(r)or¡i)2,

/(^o^i)2 distinct (namely one of them equal to e and the other distinct from e in

G2), we may prove as in Lemma 4 that, in G, (i/o^i)2 f^ (^o^i)2- C

Clearly the series of Lemmas 1-5 proves Theorem 2.3. G

REMARK 1. A similar argument shows that G is torsion-free.
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REMARK 2. In the proof of Lemma 4 we have in fact found an algorithm

deciding whether anif = e in G or not. Define

kjÇrf) = sup{n : ~rf[i] \ n = ~rf[j] \ n}    for i,j < i(lf)

(with supw = w). We see from the proof of Lemma 4 that if we have ~u, if of the

same length and, for every i,j,i',j' < ¿(if) = *•(!?),

hij(~v) < hi'j'O?)   iff   hj(lf) <hi>j>(Tf),

and

hiji~v) < w    iff   hiji^f) < wi

then, in G, anlf = e iff a""¡7 = e (it follows from the form of the algorithm

mentioned above).

DEFINITION 2.4 (SEE [2 OR 3]). For an infinite cardinal A define DedA as

the first cardinal p such that there is no dense linear order of cardinality u with a

dense subset of cardinality A.

Notice that A+ < DedA < (2A)+, cf(DedA) > A.

COROLLARY 2.5. Let No < A < p < DedA. Then there exists a torsion-free

group G of cardinality p such that \G2\ = A.

PROOF. Consider the tree -A2. Then we can choose a subtree of -A2 such that

it has p branches of length A, and when we generate on the set of these branches a

group G (as in Definitions 2.1 and 2.2) then the set G2 has cardinality A.    D

CONJECTURE. If G is infinite and has no elements of order 2, then \G\ <

Ded(|G2|).
Changing somewhat Definition 2.2 one can construct analogously for any fc > 2 a

torsion-free group G of power continuum with \Gk\ — Ko- (In the proof of Lemma 4

one should use instead of G2 the group Gk = G\/Hk, where Hk is the normal

subgroup of Gi generated by {afc,6fc}.) The counterpart of Corollary 2.5 holds as

well.
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