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ON THE NUMBER OF SQUARES IN A GROUP
LUDOMIR NEWELSKI

ABSTRACT. We show that there is a connection between the number of
squares in a group and the cardinality of the group. For example, if a group
has countably many squares and 22 = e implies = = e, then its cardinality is
bounded by 280 and this bound can be obtained.

0. Introduction. This paper gives a negative answer to the following conjec-
ture: If in a group without elements of order 2 there are only countably squares,
then this group is countable.

In all the paper we deal with infinite groups only. In §1 we prove that if « is an
infinite cardinal and a group G without elements of order 2 has k many squares,
then the cardinality of G is bounded by 2%. The proof is technical and uses the
Erdés-Rado theorem. In §2 we construct an example of a torsion-free group G of
power continuum with only countably many squares, which according to the results
from §1 is the best possible. The construction easily generalizes (Corollary 2.5) to
the case of A\-many squares where ) is an arbitrary infinite cardinal; however in this
case we are able to construct a group whose cardinality is that of a linear ordering
with a dense subset of cardinality .

One could ask if the above results easily generalize when squares are replaced by
higher powers. For k > 1 let G*¥ = {z*: z € G}. When dealing with kth powers,
the natural assumption on a group is that ¥ = e implies z = e. After the first
version of this paper was written, Professor G. Higman pointed out to the author
the following:

(1) If we want to prove for some f satisfying f(k) > 2* that, for any G, |G| <
f(|G¥|), then w.l.o.g. we may assume that G* is contained in the center of G.

(2) If Burnside’s group of exponent k with 2 generators is finite, then for any G
satisfying z* = e — z = e we have |G| < 2/6"I,

Thus (2) provides us with another, maybe more algebraic, proof of Theorem 1.3,
and gives us an estimation for G in case k = 2,3,4,6. However, (1) enabled
the author to strengthen his previous estimations and prove that |G| < 21G*l for
k = 2"3™ where n > 0 and m = 0 or 1. For other k’s the question of whether
any estimation exists remains at present open. However, at least we cannot prove
that for some k > 1, for any G, |G| = |G¥|, as the construction from §2 generalizes
to the case of kth powers for any k > 2. In contrast to the situation with infinite
groups, we trivially have that if G* is finite and G satisfies ¥ = e — z = e, then
G = G*. Notice that constructing for some k a group G such that |G| > 2/G*| (and
z* = ¢ — z = e holds) would enable us to prove that Burnside’s group of exponent
k is infinite.
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We use the standard set-theoretical notation. So, for example, <* X denotes the
set of all finite sequences of elements of X. For a finite sequence 7, t(7’) denotes
the length of 7.

1. Negative results. Throughout this section we assume that G is a group
without elements of order 2.

FACT 1.1 (A SPECIAL CASE OF THE ERDOS-RADO THEOREM, SEE [1,
3]). Let u be an infinite cardinal. Assume that f is a binary function on (2#)*
such that for every a < 8 < (2#)* we have f(a,3) € u. Then there exists § < p
and A C (2#)%, |A| = u™, such that, for every o, 8 € A, if & < G, then f(a,3) =6

LEMMA 1.2. Assume that a,b,c,d € G, (ab)? = (cd)?, (bc)? = (bd)?, and
a?=b0=c2=d? Thena=bandc=d.

PROOF. We have bcbe = bdbd, so cbc = dbd. Multiplying this equation on the
right side by d and on the left by ¢ we obtain c¢2bcd = cdbd?. From the assumptions
it follows that c? commutes with b, ¢, d, and equals d?, so we get bed = cdb. Now
(ab)?b = (cd)?b = b(cd)? = b(ab)?. So (ab)?b = b(ab)? = babab = (ba)?b, hence
(ab)? = (ba)?. From this we get

(ab)* = (ab)?(ba)? = ababbaba = b?b%a%a? = a®.

Hence (a~2ab)* = e. But in G there are no elements of order 2, so a2ab=a"1b =
e. We conclude that a = b. Repeating the above proof for ¢,d,a,b instead of
a,b,c,d, we see that c=d. O

THEOREM 1.3. Assume that G is an infinite group. Then |G| < 21671,

PROOF. By the remark in the Introdution we can assume that G? is infinite.
Let |G?| = u. Suppose that |G| > 2%. Then we can find in G pairwise distinct
elements {as: & < (2#)*} such that a2 = a} for every a < 8 < (2¥)*. For
a< B < (2%)7F let f(a,B) = (anas)? € G2. From Fact 1.1 it follows that we can
choose an infinite set A C (2#)% such that for o, 3,0/, € Aif a < 3, &/ < ' then

(a [3) f(e, ﬂ’) W.lo.g. we can assume that {a,: n < w} C A. So we have
a3 = a? = a3 = a3, (apa1)? = (az2a3)?, and (a1a2)? = (a1a3)?. From Lemma 1.2
we conclude that ag = a; and a2 = a3, a contradiction. O

DEFINITION 1.4. For a given complete theory T in a first-order language L,
a formula ©(Z;7) of L is stable in T if for every model M of T there are < || M]||
p-types over M. If o is not stable, we call it unstable.

For basic results on stability, see, for example, [2, or 3]. If G is a group, then
we say that o(Z;7) is stable in G instead of “stable in T = Th(G).”

THEOREM 1.5. Assume that G is an infinite group. If p(z;y) = zy = yz 18
stable in G, then |G| = |G?|.

PROOF. If not, let |G?| = y, and choose {aq: a < u*} C G such that a2 = a3
for < B < pt (1 > No by Theorem 1.3).

By induction one can easily construct three sequences {b,}n<w, {¢n}n<w C G
and {Bp}n<w, Bn C G for every n, such that

(1) bo = ao,

(2) bp € Bu\Bnt1, Bny1 € Bn C {ag: a < ut} for n < w,

(3) |Bn| = pT,
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(4) if ¢,d € Bp41 then (byc)? = (bnd)? = ¢, € G
Now if there are n < m such that co, = com, then taking ben, b2nt1,b2m, bam+1
we see that

(b2nb2n+1)? = (b2mbam+1)?, (b2nt1b2m+1)? = (b2n+1bam)?

and
bgn = b§n+1 = bgm = bgm+1'

So Lemma 1.2 leads to a contradiction. Thus for every n < m, cg,, # c2m. From
this we get that, for n # m, (banbam)? = (banbam+2)? holds if and only if n < m.
But (b4nb4m)2 = (b4nb4m+2)2 is equivalent to bynbambam+2 = bambam+2ban, s0
t0 ©(ban;bambam+2). It follows that using ¢(z;y) we can define on some infinite
subset of G a linear order. From the facts proved in [3] we can easily deduce that
©(z;y) is unstable in G. O

2. An example. In this section we shall construct an example of a group
G of power continuum, without elements of order 2, with only countably many
squares. From Theorem 1.3 it follows that such an example is the best possible for
a countable G2, i.e. |G| is maximal possible.

The construction consists of defining a suitable normal subgroup Hy of a free
group Gy of power continuum. G will be the quotient group Go/Hp. Let Gg be the
free group generated by the set of letters {n: n € “2}. We identify finite sequences
of elements of “2 (i.e. elements of <¥(“2)) with appropriate words—element of Gj.
Recall that k = {i: 1 < k} for k € w.

DEFINITION 2.1. For every 77 € <¥(*2) we define h(7') € <“(<%2) as
follows: Let ¢«(%’) =n. For i < n let

ki=.glja&x min{t+1:t<w & 7[] [ t# 7] It}

Here min@ = max@ = 0. Define % (7)) = 7] | ki for every i < n, and
B (7)) =n.

We define now a subgroup Hy of Gy as follows:

DEFINITION 2.2. (1) R = {(M)*(V)"2: 7,V € <% (v¥2) & R(7) =
(7))}

(2) Let Hy be the normal subgroup of Gy generated by R, and let G = Go/Hp.

For notational simplicity we treat words in G as names for their images in G
under the canonical projection.

THEOREM 2.3. |G| = 2%, |G?| = Ry and in G there are no elements of order

We prove Theorem 2.3 in a series of lemmas.
LEMMA 1. Ifn,v € Y2, n# v then, in G, n # v.

PROOF. Consider a homomorphism f: Gy — Z2 such that f(n) =0 and f(v) =
1. Then Hy CKer f. 0# 1, s0, in G = Go/Hp,n #v. O

Notice that if n,v € “2, n # v, then ?((n)) = 7((1/)) = (D), so in G we have
n? = v2. Denote this common square by o, i.e. for alln € “2, 72 = a in G.
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LEMMA 2. Every element of G is equal to o* % for some k € Z and 7 €
<@(w2) such that, for 0 <1 <o(7) -1, 7[i] # 7 +1].

PROOF. Notice that for n € “2,in G, 7! = o™ !n; 9y = o; and o, 0~
commute with v,v~! for every v € “2. O

LEMMA 3. |G?| < R,.

1

PROOF. The value of (a*7")2 = a2*(7")? depends only on k and % (77), so
there are only countably many possibilities. 0O

LEMMA 4. InG: If (of )2 =, then o 7 =e.

PROOF. We prove it by induction on |Rng(7%’)|. We may assume that 7" is
such as in Lemma 2.

(a) If |Rng(7’)| = 0 then %’ = &, and we have (o*)? = o?* =e.

(b) If |Rng(7’)| = 1 then i’ = (n) for some n € “2, so we have

k?)? 2k+1.

(a =a®nm =a

Consider now the homomorphism f:Go — (Z,+), such that, for every n € “2,
f(n) = 1in Z. Then clearly Hy C Ker f, so whenever f(z) # f(y) in Z, z # y
holds in G. (For simplicity we do not distinguish explicitly between f and the
induced homomorphism f:G — (Z,+).) So in case (a) we get f(a?*) = 4k = 0,
hence k = 0. Similarly, in case (b) we get 4k + 2 = 0, a contradiction.

(c) Assume that |Rng(7’)| = n > 2, and for all a* 7" such that |Rng(7)| < n,
Lemma 4 holds. Assume that o*%’)? = e. We have to prove that o* 7" =e.

Let us choose two letters 7, v € Rng(7’) such that

(7 ((n,0))[0]) = (B ((m, ))[1])

is maximal possible. If there are two or more such pairs n, v € Rng(7’), we choose
one of them. We prove that there is an inner automorphism of G which maps
o® 7’ to some o7’y such that (a*7%’1)? = e and |Rng(7%’1)| < n. Clearly by the
induction hypothesis this will finish the proof of Lemma 4.

CLAM A. If 7 = 7o~ (n)" 717 (n)" 72, and n,v ¢ Rng(7'1), then, in G,
NN = v .

PROOF OF CLAIM A. Notice that from the maximality of the choice of n,v
and from the definition of % it follows that

BT~ (M) = B (T @)

Soin G, W19 1m = W17 1v. Multiplying on the left side by (77°1)~! we see
that Claim A holds.

From Claim A follows at once

CLAM B.If 7' = 7o~ (n)~ 71~ ()" 72" (¥)" 73 andn,v ¢ Rog(71™72)
then, in G, ' = o~ ()" 71~ (W) "2~ ()" W'

PROOF. Apply Claim A twice to get

071V72V = 71771777277 = V71V727]-



ON THE NUMBER OF SQUARES IN A GROUP 217

From Claim B it follows that 7" equals in G some other word 7"’ such that if we
delete in 7’ the fragments not containing v or 7, then we obtain a word of the
form

(1) n*7 or

(2) vV, where V' = (v,n,v,n,...) or ¥V = (n,v,n,v,...) and L € Z, ¢ > 0.

By Claim A we can replace n%* by v?*. There are two cases.

CASE 1. ((7/) is odd.

In this case the first and the last member of 7" are the same. Assume w.l.0.g. that
7 =W)" 7" (v) and (2) holds. Let %' = 70" (V)" 71" ()" N2 where v,n ¢
Rng(7%’ 0™ 7"2). Then the inner automorphism ¢ defined by

p(z) = v 22(v72)""

maps o’ onto a*v W or 1 = a* 7.

Now when we delete in 7’ all letters distinct from v,7, we obtain the word
V2427 "and (V') = (V') — 2. Hence, iterating this process finitely many times,
we get the word a7’y (after possible reductions according to Lemma 2) such that
Rng(7’1) C Rng(7’) and 7 ¢ Rng(7’1) or v ¢ Rng(%'1), so in this case the
induction step is done. '

CASE II. ((7’) is even. If ¥ = @, we finish, for then n ¢ Rng(7"’) or v ¢
Rng(7"") and Rng(7"") C Rng(7’). So assume that 7" # @.

Let us consider now the free group G; generated by free generators a and b.
Let H; be the normal subgroup of G generated by the set {a2,b%}, and let G2 =
G1/H;. The elements of G can be written down in a very simple form, namely
as finite sequences of the form ababab- - - or bababa - -- (the length clearly may be
even or odd), and any two such sequences are equal in G iff they are equal.

We define some homomorphism f: Go — G2 (it suffices to define F(u) for every
uE“2).

(i) If A((n,))[0] C u, then let f(u) = a.

(ii) If k((n,v))[1] C u, then let f(u) = b.

(iii) If neither (i) nor (ii), then let f(u) =e.

Now, from the definitions of h and Hp it follows that Hy C Ker f. From the
choice of 7, v it follows that f(a*7"’) is equal to f(7°), and f(7') equals (ab)* or
(ba)* for some ¢ > 0.

But we know that, in G, (a" %)% = e, so, in G2, [(ab)']? = (ab)?* = ¢, a
contradiction, because, in Gz, (ab)?* = e only when ¢ =0. O

LEMMA 5. |G?| > No.

PROOF. This follows immediately from Theorem 1.3, but we can give also
another, more direct proof. For no,m1 € %2, no # m let g(no,m1) be no |
min{k: no[k] # mi[k]}. Now if no # m, vo # v1, mi,vi € “2 and g(no,m) #
g(v0,v1), then by choosing a suitable homomorphism f: Gy — G2 with f(non1)?,
f(vov1)? distinct (namely one of them equal to e and the other distinct from e in
G-), we may prove as in Lemma 4 that, in G, (non1)? # (vor1)?. O

Clearly the series of Lemmas 1-5 proves Theorem 2.3. O

REMARK 1. A similar argument shows that G is torsion-free.
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REMARK 2. In the proof of Lemma 4 we have in fact found an algorithm
deciding whether a7 = e in G or not. Define

hij(m') =sup{n: 7] I n="[5] I n} ford,j<u(7)

(with supw = w). We see from the proof of Lemma 4 that if we have 7°, 7 of the
same length and, for every 1,7,7,7’ < u(7") = (7)),

hij(V) < hoy (V) iff hij(7) < hirye (),

and
h,‘j(—l?) <w iff hij(_ﬁ)) < w,
then, in G, a® %’ = e iff a7 = e (it follows from the form of the algorithm
mentioned above).
DEFINITION 2.4 (SEE [2 OR 3]). For an infinite cardinal A define Ded )\ as
the first cardinal u such that there is no dense linear order of cardinality u with a

dense subset of cardinality .
Notice that At < Ded A < (2*)*, cf(Ded ) > .

COROLLARY 2.5. Let Rg < A < u < Ded\. Then there exists a torsion-free
group G of cardinality p such that |G%| = A.

PROOF. Consider the tree <*2. Then we can choose a subtree of <*2 such that
it has p branches of length A, and when we generate on the set of these branches a
group G (as in Definitions 2.1 and 2.2) then the set G? has cardinality A\. O

CONJECTURE. If G is infinite and has no elements of order 2, then |G| <
Ded(|G?|).

Changing somewhat Definition 2.2 one can construct analogously for any k > 2 a
torsion-free group G of power continuum with |G¥| = Ro. (In the proof of Lemma 4
one should use instead of G2 the group Gy = G1/Hj, where Hy is the normal
subgroup of G, generated by {a*,b*}.) The counterpart of Corollary 2.5 holds as
well.
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