ADDITIVE GROUPS OF T-RINGS

GEORGE V. WILSON

ABSTRACT. We build on a result of Bowshell and Schultz to give a complete characterization of the groups which occur as the additive groups of T-rings. This answers a question of Feigelstock.

In this paper, all groups are abelian. We write R^+ for the additive group of a ring R, t(G) for the torsion subgroup of a group G, and G_p for the p-primary component of G.

Fuchs [F1, Problem 45] posed the problem of classifying those rings R with the property that $R \approx \operatorname{End}_{\mathbf{Z}}(R^+)$. Bowshell and Schultz [BS] found one class of rings with this property that they called T-rings. A unital ring R is a T-ring if the map $m \colon R \otimes_{\mathbf{Z}} R \to R$ induced by multiplication $a \otimes b \to ab$ is an isomorphism. [BS] characterized T-rings in terms of their additive groups. In order to state their result, we recall some basic facts about torsion-free groups. A torsion-free group has rank one if and only if it is isomorphic to a subgroup of the rational numbers. Rank one groups are completely classified by an invariant called type. A rank one group is the additive group of a unital ring if and only if its type is idempotent under a natural product. Readers unfamiliar with this material are referred to [F2, §85] for a thorough treatment.

We are now in a position to state the above-mentioned result.

PROPOSITION 1 [BS]. The following are equivalent for a unital ring R:

- (A) R is a T-ring,
- (B) (1) the quotient $R^+/t(R^+)$ is a rank one group of idempotent type and
- (2) if R_n^+ is nonzero, it is cyclic and $R^+/t(R^+)$ is p-divisible.

From this, one can easily see that a torsion group is the additive group of a T-ring if and only if it is cyclic; see [BS, 1.4]. This led Feigelstock to ask if the conditions in B above are enough to guarantee that a nontorsion group is the additive group of a T-ring [Fg, Question 4.7.30]. By Proposition 1, it suffices to determine if such a group is the additive group of some unital ring. In fact, these conditions are not sufficient and we now determine the minor additional restriction needed to give a T-ring.

PROPOSITION 2. Let G be an abelian group which satisfies the conditions in (B) above. Then either $G \approx t(G) \oplus G/t(G)$ or else $\bigoplus G_p \leq G \leq \prod G_p$.

PROOF. Since we assume that each nonzero p-component G_p is cyclic, the G_p are pure and bounded, hence they are summands [F2, 27.5]. Let $\pi_p \colon G \to G_p$ be a projection map and let $\alpha = \prod \pi_p \colon G \to \prod G_p$ be the product of these maps. Suppose that there is even one element x with infinitely many of the $\pi_p x \neq 0$. In

Received by the editors September 30, 1985 and, in revised form, December 27, 1985. 1980 Mathematics Subject Classification (1985 Revision). Primary 20K99.

this case, we claim that α is an injection. Let $q: G \to G/t(G)$ be the quotient map, $q(x) \neq 0$. Take any $g \in G$. If $g \in t(G)$, then of course $\alpha(g) \neq 0$. Next suppose $g \notin t(G)$. Since G/t(G) is assumed to be a rank one group, q(g) is a rational multiple of q(x), i.e. mq(x) = nq(g) for some integers m and m. This implies that mx = ng + t for some $t \in t(G)$. Since m has infinitely many nonzero projections $m_p x$, so does m. Since m has only finitely many nonzero projections, m must have infinitely many and so m does also. Thus, m decomposition injection.

Next suppose that there is no element with infinitely many projections. Then every element $g \in G$ can be written g = k + t, where $k \in \ker \alpha$ and $t \in t(G)$. Since $\ker \alpha \cap t(G) = 0$, $G = \ker \alpha \oplus t(G)$.

We can now complete the picture of the additive groups of T-rings.

PROPOSITION 3. A group G is the additive group of a T-ring if and only if

- (1) it satisfies the conditions of (B) in Proposition 1 and
- (2) there is some $g \in G$ such that for every prime p, $\pi_p g$ generates G_p .

PROOF. Say $G \approx R^+$ for a T-ring R. Proposition 1 shows that (B) holds. It is easy to see that for $1 \in R$, $\pi_p 1$ generates G_p for every p.

Conversely, assume that G satisfies (1) and (2). By Proposition 2, $G \approx t(G) \oplus G/t(G)$ or $\bigoplus G_p \leq G \leq \prod G_p$. Suppose that $G \approx t(G) \oplus X$, where X is a rank one, torsion-free group of idempotent type. Write the g given in condition (2) as g = t + x, $t \in (G)$, $x \in X$. Since $\pi_p(x) = 0$ for all p and $\pi_p(t) \neq 0$ for only finitely many p, $\pi_p(g)$ is nonzero for only finitely many p. Since $\pi_p(g)$ generates each G_p , only finitely many G_p are nonzero. Since each G_p is cyclic, t(G) is cyclic and carries a unital ring structure. Since X is rank one of idempotent type, it also has unital ring structure. Clearly, $G \approx t(G) \oplus X$ carries the product ring structure.

Suppose $\bigoplus G_p \leq G \leq \prod G_p$. Let $q\colon G \to G/t(G)$ be the quotient map. Choose $g\in G$ such that for all $p,\ \pi_p g$ generates G_p and so that q(g) has an idempotent height sequence. Give each G_p the ring structure that makes $\pi_p g$ the unity of G_p and give $\prod G_p$ the product ring structure. We claim that G is a subring. Clearly, if $t\in \bigoplus G_p$ and x is any element of $\prod G_p$, then $xt\in \bigoplus G_p\leq G$, so we must show that the product of nontorsion elements of G is again in G. Take $x,y\in G$ and write $jx=mg+t,\ ky=ng+s$ with $j,k,m,n\in \mathbf{Z},\ t,s\in t(G)$. Since q(g) has idempotent type and is divisible by j and k, it is divisible by jk. Choose $z\in G$ with $jkz=mng+u,\ u\in t(G)$. With this choice, $jk(z-xy)\in t(G)$, so $v=z-xy\in t(G)$ and $xy=z-v\in G$. We see that G is a unital subring of $\prod G_p$ and so is a T-ring.

It is fairly easy to see that any group satisfying the conditions of (B) has a ring structure which makes the multiplication map $G \otimes G \to G$ an isomorphism. The extra condition in Proposition 3 is simply to insure that this is a unital ring structure.

REFERENCES

- [BS] R. A. Bowshell and P. Schultz, Unital rings whose additive endomorphisms commute, Math. Ann. 228 (1977), 197-214.
- [F1] L. Fuchs, Abelian groups, Publ. House Hungarian Acad. Sci., Budapest, 1958.
- [F2] _____, Infinite Abelian groups, Vols. 1 and 2, Academic Press, New York and London, 1970 and
- [Fg] S. Feigelstock, Additive groups of rings, Pitman, London, 1983.