COVERING ÉTENDUES AND FREYD'S THEOREM

KIMMO I. ROSENTHAL

ABSTRACT. From Freyd's covering theorem for Grothendieck topoi, it immediately follows that every Grothendieck topos \mathcal{E} admits a hyperconnected geometric morphism $\mathcal{F} \to \mathcal{E}$, where \mathcal{F} is an étendue of (discrete) G-sheaves. As a corollary, we obtain that \mathcal{E} admits an open surjection from a localic topos.

A fundamental representation theorem in topos theory is provided by the following result of P. Freyd. If \mathcal{E} is a Grothendieck topos, there is a connected atomic geometric morphism $\mathcal{F} \xrightarrow{f} \mathcal{E}$, where \mathcal{F} is localic over a topos $\mathcal{C}(G)$ of continuous G-sets, G being a topological group. In fact, G may be chosen to be either G_0 , the group of permutations of \mathbf{N} , or G_1 , the group of order-preserving permutations of \mathbf{Q} . (See [1] or the excellent survey article [2].) In [4], it was shown that given \mathcal{E} , there is a hyperconnected geometric morphism $\mathcal{F} \xrightarrow{f} \mathcal{E}$, where \mathcal{F} is an étendue, i.e., there is a surjective local homeomorphism $\mathcal{F}/X \to \mathcal{F}$ with \mathcal{F}/X localic. Using Freyd's result, we not only obtain this theorem directly (with \mathcal{F} a particularly nice étendue), but the fact that \mathcal{E} has a localic cover via an open surjection [3, p. 61] also follows. To fix some notation, $\operatorname{sh}(G; B)$ denotes the topos of (discrete) G-sheaves, where B is a locale on which the group G acts. $\operatorname{sh}(G; B)$ is a basic example of étendue and is locally $\operatorname{sh}(B)$. Also, \mathcal{S}^G denotes the topos of G-sets. There is a canonical map $\mathcal{S}^G \xrightarrow{g} \mathcal{C}(G)$ [4].

THEOREM. Let \mathcal{E} be a Grothendieck topos. There is a hyperconnected geometric morphism $\mathcal{F} \xrightarrow{h} \mathcal{E}$, where \mathcal{F} is an étendue of G-sheaves, $\operatorname{sh}(G; B)$. (G can be taken to be either the group G_0 or G_1 .)

PROOF. Let $\mathcal{C}(G)[A] \xrightarrow{f} \mathcal{E}$ be connected and atomic, where $\mathcal{C}(G)[A]$ is the topos of $\mathcal{C}(G)$ -sheaves on an internal locale A in $\mathcal{C}(G)$. Let B be the Macneille completion of A. Thus A is the cocontinuous reflection of B along the hyperconnected geometric morphism $\mathcal{S}^G \xrightarrow{g} \mathcal{C}(G)$. The following diagram can be seen to be a pullback.

$$sh(G; B) \xrightarrow{\overline{g}} \mathcal{C}(G)[A]$$

$$\downarrow_{\overline{k}} \qquad \qquad \downarrow_{k}$$

$$S^{G} \xrightarrow{g} \mathcal{C}(G)$$

Since pullbacks perserve hyperconnectedness [3, p. 54], \overline{g} is hyperconnected. Connected and atomic implies hyperconnected [2, Lemma 2.1], thus the composite $\operatorname{sh}(G;B) \xrightarrow{\overline{g}} \mathcal{C}(G)[A] \xrightarrow{f} \mathcal{E}$ is hyperconnected. Take this to be h. \square

Received by the editors January 31, 1986.

1980 Mathematics Subject Classification (1985 Revision). Primary 18B25.

Key words and phrases. Grothendieck topos, étendue, localic topos.

REMARK. $\operatorname{sh}(G;B) \xrightarrow{\overline{k}} \mathcal{S}^G$ is localic and \mathcal{S}^G is Boolean, thus our étendue satisfies that every object is a quotient of decidable object [2, Proposition 4.3].

COROLLARY. Let \mathcal{E} be a Grothendieck topos. There is an open surjection $\operatorname{sh}(B) \to \mathcal{E}$, where B is a locale on which G_0 (or G_1) acts.

PROOF. Compose the hyperconnected map $\operatorname{sh}(G;B) \xrightarrow{h} \mathcal{E}$ with the surjective local homeomorphism $\operatorname{sh}(B) \to \operatorname{sh}(G;B)$. \square

Using this open surjection in the Joyal-Tierney representation theorem [3, Theorem VIII, 3.2], we have \mathcal{E} is equivalent to a topos of Γ -sheaves, where Γ is a localic groupoid with locale of objects B (on which $G_0(G_1)$ acts).

REFERENCES

- 1. P. Freyd, All topoi are localic, or Why permutation models prevail (unpublished typescript, Univ. of Pennsylvania, 1979).
- P. T. Johnstone, How general is a generalized space? Aspects of Topology, London Math. Soc. Lecture Notes, no. 93, 1985, pp. 77-111.
- 3. A. Joyal and M. Tierney, An extension of the Galois theory of Grothendieck, Mem. Amer. Math. Soc. No. 309, 1984.
- K. I. Rosenthal, Quotient systems in Grothendieck topoi, Cahiers Topologie Géométrie Différentielle 23 (1982), 425–438.

DEPARTMENT OF MATHEMATICS, UNION COLLEGE, SCHENECTADY, NEW YORK 12308