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ON THE AVERAGE NUMBER OF GROUPS
OF SQUARE-FREE ORDER

CARL POMERANCE

ABSTRACT. Let G(n) denote the number of (nonisomorphic) groups of order

n. It is shown here that for large x

xi.68 < J2'G(n) < i2   exp{-(l + o(l)) log x log log log x/ log log x),
n<x

where ¿J denotes a sum over square-free n. Under an unproved hypothesis

on the distribution of primes p with all primes in p — 1 small, it is shown that

the upper bound is tight.

1. Introduction. Let G(n) denote the number of isomorphism classes among

the groups of order n. For n square-free, there is a relatively simple formula for

G(n) due to Holder [9]. First let

f(n,m) = JJ(n,g- 1).
q\m

(Throughout the paper, the letters p, q will denote primes.) Then

(1.1) G(n) = £II/(P,W-<i~1'    n square-free.

d\n p\d

With this elegant formula, the techniques of number theory can be applied to give

several interesting results about G(n) for n square-free. For example, in Murty and

Murty [11], it is shown that

"^2 p2(n) log G (n) = (ci + o(l))xloglogx
n<x

for a certain positive constant ci. (The square of the Möbius function p2(n) is

the characteristic function of the square-free integers.) Thus the geometric mean

of G(n) for square-free n < x is about (logx)^ Cl/'6. In Erdös, Murty, and Murty

[4] it is shown that p2 (n) log G(n)/ log log n has a continuous, strictly increasing

distribution function on [0, oo).

The maximal order of p2(n)G(n) is somewhat different. Murty and Srinivasan

[12] recently showed that for all n,

(1.2) p2(n)G(n) < n/(logn)Alog3"
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for a certain positive constant A, where logfc n denotes the fc-fold iterated natural

logarithm. They also showed that the estimate (1.2) is essentially best possible, for

there are infinitely many n with

p2(n)G(n) >n/(logn)Blog3"

for some positive constant B.

This paper will be concerned with the average order of p2(n)G(n). From the

distribution function result cited above it follows that for any K, the set of n with

p2(n)G(n) > (logn)^ has positive asymptotic density.   From this fact and from

(1.2) it follows that for any fixed K and all large x (depending on the choice of K),

x(logx)K < ^p2(n)G(n) < x2/(logx)Alos>x.

n<x

Below it is shown that for large x,

(1.3) x168 < £>2(n)G(n) < x2/exp{(l + o(l))logxlog3x/log2x}.

n<x

Moreover, the equation

(1.4) J2 P-2(n)G(n) = x2/exp{(l + o(l)) logxlog3 x/log2 x}
n<x

is shown modulo a reasonable conjecture on the distribution of primes p with all

primes in p-1 small. The "o(l)" appearing in (1.3) and (1.4) is partially expanded

to

—4x- 1 / /log4xx
log4x+^-+0

log3x \^ log3x y\log3x

Let C(n) denote the number of isomorphism classes among all groups of order n

which have all of their Sylow subgroups cyclic. Then for n square-free, G(n) — C(n).

In [11], a formula that generalizes the Holder formula (1.1) is given. Namely it is

shown that

(t<\ ^.\_rnf fÍP^n/d) - f(pi~1,n/d)(1.5) CM-L11Z.-p<-i(p-i)-'
d\\np°\\di=l V       Ky        '

where we write m||n if m\n and (m,n/m) = 1. In [12], (1.2) is actually shown via

the stronger result

(1.6) C(n)<n/(logn)Alo*°n.

Below, the upper bound in (1.3) is shown by proving the stronger result that the

same upper bound holds for Yln<x C(n).

In [11], it is shown that C(n) < f(n,n) for all n. Thus the upper bound result of

this paper could possibly be achieved by proving a similar result for J2n<x f(n>n)-

Although superficially simpler, this sum does not appear so easy to estimate. Prob-

ably the same upper bound could be worked out, but I have not completed all of

the details. It should be remarked that essentially the same upper bound is estab-

lished in [5] for the sum ^2n<x f(n — 1, n), where the dash indicates the sum is over

composite integers.
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If we drop the restriction that n is square-free, the behavior of G(n) changes

markedly. In fact

xcl°*2l<^G(n)<xD1°e2*

n<x

holds for certain positive constants G, D. The lower bound follows from restricting

n to prime powers and using results of Higman [8] and Sims [17] on p-groups. The

upper bound follows from work of Neumann [13] and the recent classification of the

finite simple groups. In fact, from these papers it follows that G can be chosen as

any number smaller than 2/(27 log2 2) and D can be chosen as any number greater

than 1/(2log2 2).

2. The upper bound.

THEOREM 2.1.   There is a constant c2 such that for all large x,

(2.1)

x+log±x-l+c2/log4x
- y^ C(n) < x ■ exp <- I log3 x + log4 _
XnTx I     l0S2*V l0g3X Vl0g3*

PROOF. From (1.5) we have (<p denotes Euler's function)

CW = £¿T II Y,Pa-l(f(Pl,n/d) - f(f-\n/d))
d\\n ™    ' p«||dt=l

d\\n ^K   ' p°\\di=l
p|d->/(p,n/d)>l

Note that

u ¿Pa-7(p\n/d) < d^ II P~%f(p\n/d)
p°||<it=l 6\dpi\\S

= d^2s-1f(6,n/d) < o(d)f(d,n/d),
S\d

where a is the sum of the divisors function. Thus

(2.2) C(n)<        g        g},(*5).

p|d-»/(p,n/d)>l

From the Hardy-Ramanujan inequality [7], the number of integers n < x with

w(n) > 21ogxlog3 x/(log2 x)2 (where w(n) is the number of distinct prime factors

of n) is less than

x • exp(-1.5 log x log3 x/ log2 x)

for large x. Thus by virtue of (1.6) (or the easier inequality C(n) < f(n,n) < <p(n)

from [11]), we may ignore such n in the sum (2.1). Let ]T* denote a sum over

integers n with

(2.3) w(n) < 21ogxlog3x/(log2x)2.
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From (2.2) we have

(2.4)       e*<*.)<£• 5$ r m-)-
n<x d<x m<x/d

p\d—►/(p,m)>l

Let a(n) denote the largest square-free divisor of n.   Then if m is such that p|d

implies f(p,m) > 1, then

a(f(d,m)) = a(d).

If fc is any integer with a(k) = a(d), let

Nk,d(y)=  £* L

Thus (2.4) is now transformed to

n<x d<z    ^v   y      fc<x/d

a(fc)=a(d)

m<y

f(d,m)=k

We now turn our attention to bounding Nk,a(y). If TO is sucn that f(d,m) = fc,

we write m = mim2 where mi is the product of the distinct primes q\m with

(d, q — 1) > 1. Say the prime factorization of m\ is <?i • • • qs. Let kj — (d, qj — 1) for

j — 1,..., s. Thus Yij=i kj = fc and each kj > 1. That is, the multiset {fci,..., fcs}

is a factorization of fc. (By a factorization of an integer fc we mean an unordered

multiset of integers exceeding 1 whose product is fc.) Let 7(k) denote the set of all

factorizations of fc. For each factorization 7 in 7(k), let Njtd(y) denote the number

of m counted by Nk,d(y) which give rise to the factorization 7 as described above.

Thus

(2.6) JVm(»)=    £   NJ4(y)-
7€7{k)

For 7 = {fci,..., fcs}, we have

N74(y)<y £ -L,

where mi runs over integers of the form q\- ■ -qa, the g's being distinct primes with

(d, qj — 1) = kj for j = 1,..., s. Thus

t»)     *,ws,n e i<„n'°gl°s";?loe%
J=l q<y * ¿=1 ^   •?'

gElmodlCj

for some absolute constant c3 (see Norton [14] or Pomerance [15]).

Note that s = w(mi) < w(m) so that if m is counted by Nk,d(y), we have by

(2.3) that

(2.8) S<21ogxlog3x/(log2x)2.
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We now majorize the product Ylj=i 0°8 I°8 2/ + c3 l°g %) (f°r k,y <x) by breaking

it into two parts corresponding to kj < exp((log2 x)3) and kj > exp((log2 x)3). The

first part is at most, by (2.8),

(log2x + c3(log2x)3)«<exp(7loga:(log3X)2

number of

second part is majorized by

Í   logx(log3x)2l

I       (log2x)2     J(log2 x)2

for large x. The number of factors in the second part is 0(logx/(log2 x)3), so the

(log2 x + c3 log x)0(iogx/(iog2 x)3) _ exp |0 /

Therefore, for large x and k,y < x,

logx

(log2 x)2

n(loglogy + c3logfcJ)<exp{81^|^}.

Next note that by (2.8),

/S S

n #**)=n wm < (c4iog2 x)a
j=i    j=i

< exp{31ogx(log3x)2/(log2x)2}

for large x.

Putting these estimates into (2.7), we have

^,d(2/)<|exp|ll

Thus from (2.6) we have

logx(log3x)2

(log2 x)2

^„(riiV/WexpflllÄfÜ},
(log2 x)2

where f(k) is the cardinality of 7(k), that is, the number of factorizations of fc.

From (2.5) we now have

/ \

(2.9)        ¿2'C(n)<x^2*
n<x

But note that

d<x
d<p(d) £  m

k<x/d
\a(k)=a{d) J

exp < 11
logx(log3x)

(log2 x)2

d<x

°{d)

d<p(d)
O(logx).

Also note that since d satisfies (2.3), for large x

x      3 log x log3 x
£   i<*(

fc<x/d
a(k)=a(d)

da(d) '      log2 x
< ip    X,

3 log x log3 x

log2x

where xp(x, y) denotes the number of integers up to x, none of whose primes exceed

y. Indeed, if a(k) = a(d), then a(d)|fc and all of the primes in k/a(d) are among
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the primes in d. Thus the number of such fc < x/d is at most the number of integers

below x/da(d) all of whose primes are among the first u>(d) primes. But using (2.3)

the oj(d)th prime is less than 3 log x log3 x/log2 x for large x.

From de Bruijn [2],

/    31ogxlog3x\ |4logx(log3x)2|

V log2x      J - {      (log2x)2     J

for large x. Therefore, from (2.9) we have

for large x. We now use Theorem 5.1 in [3] which asserts that

for all large fc and some constant C5. The theorem now follows where we may choose

c2 as any constant with c2 < C5.

3. The lower bound.

THEOREM 3.1.   For all large x,

J2p2(n)G(n)>x168.
n<x

PROOF. A key ingredient in the proof is a new result which comes out of the

work of Balog [1], Fouvry [6], and Rousselet [16]:

Theorem (Balog-Fouvry-Rousselet) . There is a constant 0 < c6 < 0.32

such that uniformly for all y > xCe the number N of primes p < x with all primes

in p — 1 below y satisfies N » x/log x.

(The notation f(x) » g(x) is equivalent to g(x) = 0(f(x)).) For a short

discussion on the background of this kind of result, see [5]. The number of integers

up to x divisible by a square-full number exceeding log x is 0(x/log5' x). We

thus have the following corollary of the Balog-Fouvry-Rousselet theorem.

COROLLARY. Uniformly for all y > xCe, the number Ni of primes p < x with

all primes in p — 1 below y and with all square-full divisors of p — 1 below log x

satisfies Ni » x/log x.

Now choose numbers c-j, e > 0 with

1 1 + e

c;>C7>ö32-

Let P denote the set of primes p with

(i) (logx)C7"£ < p < (logx)C7,

(ii) all primes in p — 1 are below log x/ log log x,

(iii) all square-full divisors of p — 1 are below (cyloglogx)5.

By the corollary, the cardinality of P satisfies

|P| » (logx)C7/(loglogx)2.
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Let

fc =
log x - 2 log x/ log log x

C7 log log X

so that the product m of any fc primes in P uniformly satisfies

(3.1) x(c7-e)/c7+o(l) < m < a.l-2/loglogx

Finally, let S denote the set of all integers ma(<p(m)), where m is the product of

fc distinct primes in P and, as in §2, the function a gives the largest square-free

divisor of its argument. By (ii) above

(3.2) a((P(m))< 9<x2/loglogx

9<log x/log log x

for large x. Thus from (3.1), x1~£/c7+0(1) < n < x uniformly for n G S.

We now show that if n G S, then G(n) is very large. Indeed, from (1.1), if

n = ma((p(m)) G S and d = a(<p(m)), then

P\d p\d

(3.3) w*);j p d

djl1,9 J-  d(c7l0gl0gx)5fe

> xl-e/c7+o(l)

uniformly, using (3.1), (3.2), and property (iii) above. Therefore

J2^2HG(n) > as»-«/**-M«|8|
n<x

and it remains for us to estimate the cardinality of S. But this is easy since

Therefore

]ry (n)G(n) > x2-^)/'^1).
n<x

But by the choice of s and C7, we have 2 — (1 + e)/cr > 1.68, which proves the

theorem.

4. The conditional lower bound. In this section we give a stronger result

than Theorem 3.1, but it depends on an unproved hypothesis. Recall that \p(x,y)

denotes the number of integers n < x with all primes in n not exceeding y.

CONJECTURE. For each e > 0, the number N(x,y) of primes p in [x/2,x]

with p — 1 square-free and all primes in p — 1 not exceeding y satisfies N(x, y) »

%p(x,y)I\ogx uniformly for y > exp((logx)£).
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It might seem more appropriate to compare N(x,y) with ipo(x,y), the number

of square-free n < x with no prime in n exceeding y. However, Ivic and Tenenbaum

[10] recently showed that

ipo(x,y)-^ip(x,y)    as x —> oo and ;—;-► oo
n¿ log log x

and that for any e > 0, ipo(x,y) » ip(x,y) uniformly for y > (logx)2+£. In any

event we shall only be interested in the conjecture for y « exp(\/logx).

THEOREM 4.1.   If the conjecture is true, there is a constant c$ such that

£/^2WG(n)
n<x

2 logX    /, , log4X-l /log4XX
> x2 exp { -—2—    log3 x + log4 x + -p-+ c8    -5i-

(    log2x y log3x \log3x

PROOF. The proof parallels that of Theorem 3.1, but we use the conjecture

rather than the Balog-Fouvry-Rousselet theorem. Let P denote the set of primes

p with
(i)pe[ie(log^)2,e(l0«^)2],

(ii) every prime in p — 1 is below logx/(log2 x)2,

(iii) p — 1 is square-free.

By the conjecture,

|P| » </.(e(log*<logx/(log2x)2)/(log2x)2.

From [3], we thus have

2 (  log4x- 1  , __ /log4x
|P| > exp < (log2 xy - log2 x   log3 x + log4 x - H-+ c9 .

y 10g3 x \ iog3 x

for some constant eg. Let

[logx-21ogx/(log2x)21

2^

k
(log2 x)2

If m is the product of fc primes in P, then

(4.1) xl-3(log2 x)"2 < m < xl-2(loga x)-2

for large x. Let S denote the set of all ma((p(m)), where m runs over the integers

composed of fc distinct primes in P. Then

(4.2) a(<P(m))< Y[ p<x2{-Xo^^~2

p<logx/(log2 x)2

for large x, so that if n 6 S, then

xl-3(log2x)-2<n<;c_

Write neSin the form md, where m is the product of fc distinct primes in P

and d = a((p(m)). Then from (3.3),

G(n) > -J(d,m) = -Mm) > xi-6(i°g2x)-2
d d
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for large x by (4.1) and (4.2). Thus for large x,

J]/z2(n)G(n)>x1-6(log2:,:)"2|S|.

n<x

But

«-(?)>'-{-&('*-^'*&M£:)')}
for any cio > eg and all large x depending on the choice of cio- Thus the theorem

is proved for any eg > cio-
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