APPROXIMATE IDENTITIES AND PARACOMPACTNESS

R. A. FONTENOT AND R. F. WHEELER

Dedicated to Heron S. Collins, our teacher and friend

ABSTRACT. Let X denote a locally compact Hausdorff space and $C_b(X)$ the algebra of continuous complex-valued functions on X. The main result of this paper is that X is paracompact if and only if $C_0(X)$, the subalgebra of $C_b(X)$ consisting of functions which vanish at infinity, has an approximate identity which is a relatively compact subset of $C_b(X)$ for the weak topology of the pairing of $C_b(X)$ with its strict topology dual.

Throughout this paper X denotes a locally compact Hausdorff space, $C_b(X)$ denotes the algebra of continuous complex-valued functions on X, equipped with the strict topology β introduced by Buck [1] and studied by numerous others (for example, see [5, 11], and the surveys [2, 14]), and $C_0(X)$ denotes the algebra of continuous complex-valued functions which vanish at infinity on X. Buck proved that the β -dual of $C_b(X)$ is $M_t(X)$, the space of bounded tight (inner regular by compact sets) Borel measures on X. By the weak topology on $C_b(X)$, we mean the topology $\sigma(C_b(X), M_t(X))$.

An approximate identity for $C_0(X)$ is a uniformly bounded net $(f_{\alpha})_{\alpha \in A}$ in $C_0(X)$ such that $\|hf_{\alpha}-h\| \to 0$ for each $h \in C_0(X)$. An approximate identity is said to be well-behaved (a WBAI) if the following conditions hold: (1) $0 \le f_{\alpha} \le 1$ for all $\alpha \in A$; (2) $\alpha_1 < \alpha_2 \Rightarrow f_{\alpha_1} f_{\alpha_2} = f_{\alpha_1}$; and (3) if $\alpha \in A$ and (α_n) is a strictly increasing sequence in A, then there exists a positive integer N such that $f_{\alpha}f_{\alpha_n} = f_{\alpha}f_{\alpha_N}$ for $n \ge N$. Taylor [12] introduced the notion of WBAI and showed that if X is paracompact, then $C_0(X)$ has a WBAI. We shall use two other abbreviations: WCAI, to stand for an approximate identity for $C_0(X)$ that is relatively weakly compact in $C_b(X)$, and TBAI, to denote a β -totally bounded (= equicontinuous) approximate identity for $C_0(X)$.

Collins and Fontenot [4] studied various classes of approximate identities for $C_0(X)$, relationships between these classes, and implications for the topological properties of X. Building on earlier work of Collins and Dorroh [3], they showed that $C_0(X)$ has a TBAI if and only if X is paracompact. Subsequently, Wheeler [13] showed that paracompactness is also equivalent to existence of a WBAI for $C_0(X)$. His argument uses Stone-Čech compactifications and a set-theoretic lemma due to A. Hajnal. Collins and Fontenot also considered WCAI's: they gave an example, the space of countable ordinals, of a space X such that $C_0(X)$ has no WCAI and left open the problem of characterizing spaces X such that $C_0(X)$ has a WCAI.

In this paper we do three things. First, and principally, we show that $C_0(X)$ has a WCAI if and only if X is paracompact, and we observe that our argument also

Received by the editors November 25, 1985.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 46E25; Secondary 46J10, 54D18. Key words and phrases. Approximate identity, paracompact, weakly compact.

applies in the WBAI case to give a new and simpler proof of Wheeler's result [13, Theorem 2.1]. Second, by a direct argument that does not appeal to paracompactness of X, we prove that if $C_0(X)$ has a WCAI, then it has a WBAI and note that this result gives a second proof of our main theorem. Since a TBAI is a WCAI, we also get a new proof that $C_0(X)$ has a TBAI if and only if X is paracompact. Third, we give an example to show that a WBAI or WCAI need not contain a subnet which is a TBAI. Thus we show that a plausible approach to both the WBAI and WCAI characterization problems will not work.

We begin by mentioning two (essentially) known results about relatively weakly compact sets in $C_b(X)$. The first is this: A uniformly bounded subset F of $C_b(X)$ is relatively weakly compact if and only if it is relatively pointwise compact if and only if it is quasi-equicontinuous [7, p. 269]. The second result is the content of the following lemma.

LEMMA 1. A uniformly bounded subset F of $C_0(X)$ is relatively weakly compact in $C_b(X)$ if and only if every sequence in F has a subsequence converging pointwise to a function in $C_b(X)$.

PROOF. Suppose that F satisfies the condition on sequences. The Lebesgue Dominated Convergence Theorem then implies that every infinite subset of F has a weak cluster point in $C_b(X)$. Since β is complete, F is relatively weakly compact [8, Proposition 2, p. 177].

Suppose that F is relatively weakly compact. Then F is certainly relatively countably compact in the topology of pointwise convergence on $C_b(X)$. Let (f_n) be a sequence in F, and let $S = \bigcup_n \{x \in X : f_n(x) \neq 0\}$. Note that S is σ -compact. Let $F \in C_b(X)$ be a pointwise cluster point of the sequence (f_n) . By [9, Theorem 2.1], there is a subsequence (f_{n_k}) such that $f_{n_k}(x) \to f(x)$ for $x \in S$. But $f_{n_k}(x) = f(x) = 0$ for $x \in X - S$. Thus $f_{n_k} \to f$ pointwise on X. This concludes the proof.

The proof of Theorem 3, our main result, uses a set-theoretical lemma due to Hajnal (see [13, Lemma 2.6]). We give here a much simpler proof due to Ruzsa [10].

LEMMA 2. Let A be an infinite set, directed by <. Let $(K_{\alpha})_{\alpha \in A}$ be a cover of a set X with the following properties: (a) if $\alpha_1 < \alpha_2$, then $K_{\alpha_1} \subset K_{\alpha_2}$; (b) if (α_n) is a strictly increasing sequence in A and $\alpha \in A$, then there is a positive integer N such that $K_{\alpha} \cap K_{\alpha_n} = K_{\alpha} \cap K_{\alpha_N}$ for $n \geq N$. Then there is a set B and a family $(L_{\beta})_{\beta \in B}$ of pairwise disjoint subsets of X which covers X and has the following properties: (1) for each $\beta \in B$, $\exists \alpha \in A$, such that $L_{\beta} \subset K_{\alpha}$; (2) for each $\alpha \in A$, there is a finite subset F of B such that $K_{\alpha} \subset \bigcup_{\beta \in F} L_{\beta}$.

PROOF. Let \ll be an arbitrary well-ordering of A. Let B be the set of finite, nonempty subsets of A. Define a well-ordering, also denoted \ll , of B as follows. Let $\beta = \{\alpha_1, \ldots, \alpha_m\}$ and $\beta' = \{\alpha'_1, \ldots, \alpha'_n\}$, with $\alpha_m \ll \alpha_{m-1} \ll \cdots \ll \alpha_1$ and $\alpha'_n \ll \alpha'_{n-1} \ll \cdots \ll \alpha'_1$, be two different elements of B. If $\alpha_i = \alpha'_i$ for every $i \leq \min(m, n)$, let $\beta \ll \beta'$ if and only if m < n. If not, let j be the first index for which $\alpha_j \neq \alpha'_j$, and let $\beta \ll \beta'$ if and only if $\alpha_j \ll \alpha'_j$. Note that if $\beta \subset \beta'$, then $\beta \ll \beta'$.

Define, by induction on the cardinality of $\beta \in B$, an auxiliary function $g: B \to A$ in such a way that $g(\{\alpha\}) = \alpha$ and if $\beta \subset \beta'$, then $g(\beta) < g(\beta')$. Now let

$$L_{eta} = K_{g(eta)} - igcup_{eta' \ll eta} K_{g(eta')}.$$

The family (L_{β}) consists of disjoint sets, has the same union as (K_{α}) , and has the property that $L_{\beta} \subset K_{g(\beta)}$. All we need to prove is (2).

We prove by contradiction that each $K_{g(\beta)}$ is contained in a finite union of sets in the family (L_{β}) ; this is sufficient for (2) since $K_{\alpha} = K_{g(\{\alpha\})}$. Suppose not, and let $\beta = \{\alpha_1, \ldots, \alpha_n\}$, with $\alpha_n \ll \cdots \ll \alpha_1$, be the first element of B for which our proposition does not hold. Since $K_{g(\beta)} - L_{\beta} \subset \bigcup_{\beta' \ll \beta} L_{\beta'}$, there must be an infinite sequence $\beta_1 \ll \beta_2 \ll \cdots \ll \beta$ such that $K_{g(\beta)} \cap L_{\beta_i} \neq \emptyset$ for all i. Divide these β_i 's into n classes, the first consisting of those with all elements $\ll \alpha_1$ and the j-th, for $2 \leq j \leq n$, consisting of those β_i 's which contain $\alpha_1, \ldots, \alpha_{j-1}$ but not α_j . One of these classes, say the kth, must be infinite. Denote the β_i 's of this class by $\delta_1 \ll \delta_2 \ll \cdots$.

Now let $\gamma_i = \delta_1 \cup \cdots \cup \delta_i$. Then $\gamma_i \ll \beta$ since γ_i contains $\alpha_1, \ldots, \alpha_{k-1}$ and all its other elements are $\ll \alpha_k$. Since $\gamma_1 \subset \gamma_2 \subset \cdots$, $g(\gamma_1) < g(\gamma_2) < \cdots$. Since $(K_{\alpha})_{\alpha \in A}$ satisfies condition (b), there exists a positive integer N such that for $n \geq N$

$$K_{g(\beta)} \cap K_{g(\gamma_n)} = K_{g(\beta)} \cap K_{g(\gamma_N)}.$$

Thus, for $n \geq N$

$$(L_{\delta_n} \cap K_{g(\gamma_N)}) \supset (L_{\delta_n} \cap K_{g(\gamma_N)} \cap K_{g(\beta)}) = (L_{\delta_n} \cap K_{g(\gamma_n)} \cap K_{g(\beta)})$$
$$\supset (L_{\delta_n} \cap K_{g(\delta_n)} \cap K_{g(\beta)}) = L_{\delta_n} \cap K_{g(\beta)} \neq \emptyset.$$

Since the sets in the family $(L_{\beta'})_{\beta'\in B}$ are pairwise disjoint, this implies that $K_{g(\gamma_N)}$ is not contained in a finite union of sets in the family. This is a contradiction since $\gamma_N \ll \beta$.

THEOREM 3. Let X be a locally compact Hausdorff space. Then $C_0(X)$ has a WCAI if and only if X is paracompact.

PROOF. If X is paracompact, the construction in [3, Theorem 4.2] yields a WCAI, since β -totally bounded sets are relatively β -compact.

Now suppose that $(f_{\alpha})_{\alpha \in A}$ is a WCAI for $C_0(X)$. For each $\alpha \in A$, let $K_{\alpha} = \{x \colon f_{\alpha}(x) \geq \frac{1}{2}\}$. The family (K_{α}) is a cover of X consisting of compact sets. Introduce a (new) partial order on A as follows: $\alpha_1 < \alpha_2$ if and only if $f_{\alpha_2} > \frac{3}{4}$ on K_{α_1} . It is evident that A is a directed set and that if $\alpha_1 < \alpha_2$, then $K_{\alpha_1} \subset K_{\alpha_2}^0 \subset K_{\alpha_2}$. Suppose that (α_n) is a strictly increasing sequence in A with respect to the partial order just defined. Let $\Sigma = \bigcup_n K_{\alpha_n}$, and let f be a weak and, hence, pointwise cluster point of (f_{α_n}) in $C_b(X)$. Since $f \geq \frac{3}{4}$ on Σ and $f \leq \frac{1}{2}$ on $X - \Sigma$, Σ is clopen.

Let K be any compact subset of X, e.g., K_{α} for some α . Then $K \cap \Sigma$ is compact, and there exists a positive integer N such that $K \cap \Sigma = K \cap K_{\alpha_N}$ since $\Sigma = \bigcup_n K_{\alpha_n}^0$. Therefore $K \cap K_{\alpha_n} = K \cap K_{\alpha_N}$ for $n \geq N$.

We now choose sets $(L_{\beta})_{\beta \in B}$ as in Lemma 2 and observe that this family of sets is a locally finite (called neighborhood-finite in [6]) cover of X by pairwise disjoint, relatively compact sets. It follows easily that every open cover of X has a (not

necessarily open) locally finite refinement; thus X is paracompact [6, Theorem 2.3, p. 163].

REMARK. A slight modification of the preceding argument furnishes a new and simpler proof of Wheeler's WBAI theorem [13, Theorem 2.1]. Let $(h_{\alpha})_{\alpha \in A}$ be a WBAI and, for each α , let K_{α} be the (compact) support of the function h_{α} . Let < denote the given partial order on A. It is easy to see that Lemma 2 applies to the net (K_{α}) . The preceding argument shows that X is paracompact.

The next result does not invoke paracompactness of X, so it yields another proof of Theorem 3 via [13, Theorem 2.1].

PROPOSITION 4. Let X be a locally compact Hausdorff space. If $C_0(X)$ has a WCAI, then it has a WBAI.

PROOF. Let $(f_{\alpha})_{\alpha \in A}$ be a WCAI for $C_0(X)$ and, for each α , let $K_{\alpha} = \{x : f_{\alpha}(x) \geq \frac{1}{2}\}$, $B_{\alpha} = \{x : f_{\alpha}(x) > \frac{1}{3}\}$, and $C_{\alpha} = \{x : f_{\alpha}(x) \geq \frac{1}{3}\}$. Choose, for each α , a continuous function h_{α} on X such that $0 \leq h_{\alpha} \leq 1$, $h_{\alpha} = 1$ on K_{α} , and $h_{\alpha} = 0$ on $X - B_{\alpha}$. Note that the (compact) support of h_{α} is a subset of C_{α} . Put a (new) partial ordering < on A as follows: $\alpha_1 < \alpha_2$ if and only if $f_{\alpha_2} > \frac{3}{4}$ on C_{α_1} .

To show that $(h_{\alpha})_{\alpha\in A}$ is a WBAI, we need only check part (3) of the definition, since the rest of the definition clearly holds. Let $\alpha\in A$, K be the support of h_{α} , and (α_n) be a strictly increasing sequence in A. As in the proof of Theorem 3, let $\Sigma=\bigcup_n K_{\alpha_n}=\bigcup_n K_{\alpha_n}^0$ and conclude that, for some positive integer $N, K\cap \Sigma=K\cap K_{\alpha_N}$. Thus if $x\in K\cap \Sigma$, then $h_{\alpha_n}(x)=h_{\alpha_N}(x)=1$ for $n\geq N$. If $x\in K-\Sigma$, then $h_{\alpha_n}(x)=0$ for all n since Σ contains the support of h_{α_n} for all n. Thus $h_{\alpha}h_{\alpha_n}=h_{\alpha}h_{\alpha_N}$ for $n\geq N$ and, therefore, $(h_{\alpha})_{\alpha\in A}$ is a WBAI.

We have seen that X paracompact \Rightarrow existence of a TBAI \Rightarrow existence of a WCAI \Rightarrow existence of a WBAI \Rightarrow X is paracompact. It is natural to inquire if every WBAI or WCAI contains a subnet which is a TBAI or, equivalently, which is equicontinuous. The concluding example shows that this need not be the case.

EXAMPLE 5. Let N denote the set of positive integers, and let X be the topological sum (union of disjoint spaces, each clopen in X) of the product space N^N , given the discrete topology, and sets A_1, A_2, \ldots , each of which is a copy of the closed unit interval [0,1] with the usual topology. Observe that X is locally compact Hausdorff and paracompact [6, Theorem 7.3, p. 241]. For each $n \in N$ and for each $x \in [0,1]$, let $h_n(x) = nxe^{-nx}$. Note that $h_n: [0,1] \to [0,1/e]$ for each n and that $n \to 0$ pointwise. Since $h_n(1/n) = 1/e$, no subsequence of (h_n) is equicontinuous at x = 0.

Let us introduce some notation. Let $\pi_n \colon N^N \to N$ be the projection map onto the nth coordinate for each n. For each finite subset $S = \{a_1, \ldots, a_n\}$ of N^N , let $\varphi(S) = \sum \sum \pi_i(a_j)$ where the double summation is over the range $1 \le i \le n$, $1 \le j \le n$. Let $f_S \colon X \to [0,1]$ be defined as follows: $f_S = 1$ on $S \cup A_1 \cup \cdots \cup A_n$, $f_S = h_{\varphi(S)}$ on A_{n+1} , $f_S(x) = 0$ for other x.

It is clear that each function f_S is continuous and has compact support and that the net (f_S) , where the finite subsets S are directed upward by inclusion, is an approximate identity for $C_0(X)$. Using a diagonal process, one can easily see that each sequence from the family (f_S) has a subsequence which converges pointwise to an element of $C_b(X)$. Using Lemma 1, we conclude that (f_S) is a WCAI. It is also easily checked that (f_S) is a WBAI.

Now let $F \subset (f_S)$ be any equicontinuous subset. Because no infinite subset of the family (h_n) is equicontinuous, for each $n \in N$ there exist $k_n \in N$ such that if $S = \{a_1, \ldots, a_n\} \subset N^N$ and $\varphi(S) \geq k_n$, then $f_S \notin F$. Let $x = (k_1, k_2, \ldots)$ and suppose that $f_S(x) \neq 0$ for some S of cardinality n. Then $x \in S$ and $\varphi(S) \geq k_1 + \cdots + k_n \geq k_n$. Therefore $f_S \notin F$. Thus $f_S(x) = 0$ for every $f_S \in F$ and, hence, F is not an approximate identity for $C_0(X)$.

REFERENCES

- R. C. Buck, Bounded continuous functions on a locally compact space, Michigan Math. J. 5 (1958), 95-104.
- H. S. Collins, Strict, weighted, and mixed topologies and applications, Adv. in Math. 19 (1976), 207-237.
- H. S. Collins and J. R. Dorroh, Remarks on certain function spaces, Math. Ann. 176 (1968), 157–168.
- 4. H. S. Collins and R. A. Fontenot, Approximate identities and the strict topology, Pacific J. Math. 43 (1972), 63-80.
- J. B. Conway, The strict topology and compactness in the space of measures, Trans. Amer. Math. Soc. 126 (1967), 474-486.
- 6. J. Dugundji, Topology, Allyn and Bacon, Boston, Mass., 1966.
- N. Dunford and J. T. Schwartz, Linear operators, Part I: General theory, Interscience, New York, 1958.
- A. Grothendieck, Critères de compacité dans les espaces fonctionnels generaux, Amer. J. Math. 74 (1952), 168–186.
- 9 J. D. Pryce, A device of R. J. Whitley's applied to pointwise compactness in spaces of continuous functions, Proc. London Math. Soc. (3) 23 (1971), 532-546.
- 10. I. Z. Ruzsa, personal communication, 1974.
- F. D. Sentilles, Bounded continuous functions on a completely regular space, Trans. Amer. Math. Soc. 168 (1972), 311-336.
- D. C. Taylor, A general Phillips theorem for C*-algebras and some applications, Pacific J. Math. 40 (1972), 477–488.
- 13. R. F. Wheeler, Well-behaved and totally bounded approximate identities for $C_0(X)$, Pacific J. Math. **65** (1976), 261–269.
- 14. ____, A survey of Baire measures and strict topologies, Exposition Math. 2 (1983), 97-190.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, WHITMAN COLLEGE, WALLA WALLA, WASHINGTON 99362

DEPARTMENT OF MATHEMATICAL SCIENCES, NORTHERN ILLINOIS UNIVERSITY, DEKALB, ILLINOIS 60115