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ON AN EIGENVALUE PROBLEM OF AHMAD AND LAZER
FOR ORDINARY DIFFERENTIAL EQUATIONS

MARCELLINO GAUDENZI

ABSTRACT. In connection with a problem posed by S. Ahmad and A. C.

Lazer, we show the existence of a class of nonselfadjoint eigenvalue problems

related to the equation y(n) + Xp(x)y = 0 for which the general eigenvalues

comparison is not true. We use a comparison principle for the zeros of the

corresponding Cauchy problem.

This paper provides a contribution to the understanding of a problem raised by

S. Ahmad and A. C. Lazer [1] in connection with the comparison of the eigenvalues

for some multi-point boundary value problems which are not selfadjoint.

One is given the equation

(1) Lny + Xp(x)y = 0,

where p(x) is a continuous function of constant sign on an interval /, A is a param-

eter, and Lny is a linear differential disconjugate operator of order n, that is, the

only solution of Lny = 0 with n zeros on I (counting multiplicity) is y = 0.

Let us consider the eigenvalue problem given by equation (1) and the system of

boundary conditions

,, Lzy(a)=0,        iG{ii,...,ik},

L]V(b)=0,        JGiJu.-.Jn-k},

where o, b G I, 1 < k < n - 1, Liy, i = 0,..., n — 1, are the quasi-derivatives of

y(x) (see [7]), and {t'i,..., ¿fc}, {ji, ■ ■ ■ ,jn-k) are two arbitrary sets of indices from

the set {0,... ,n — 1}.

Problems of this type have been studied extensively (cf. [2, 3, 5]). In particular,

Elias [5] has shown that if (—l)n_fcp(x) < 0, then the eigenvalues of problems (1)

and (2) are real and nonnegative and form a divergence sequence {Am}m£N-

Ahmad and Lazer [1] have considered a particular type of boundary condition

(2), that is

(3)
y(a)=y'(a) = --- = yik-1\a) = 0,

y(b)=y'(b) = ---=y(n-k-i\b)=0,

and showed that if we set p = Pi, where p¿, i — 1,2, are two continuous functions,

considering the corresponding sequence of eigenvalues (A¿,m)m6N, i = 1,2, ordered

by magnitude, then the condition

(4)_ (-l)n-kp2(x) < (-l)"-fepi(x) < 0
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implies that

Ai,iAii2 • • • Ai>m > A2iiA2)2 • • • A2,m

for every m > 1. In the same paper they have raised the question of studying when

the condition (4) also implies

Ai,m > A2,m    for every m > 1;

an assertion that is true in the selfadjoint case, that is when the operator L is

selfadjoint, n is even, and k = n/2.

This paper aims at pointing out a general class of eigenvalue problems (1), (2)

for which the eigenvalues' comparison does not follow from condition (4).

In the following we consider the operator Lny — y^ and the case for which only

one condition is set at one of the end points a or 6, that is fc = 1 or fc = n — 1. Since

for n — 2 the problem is selfadjoint, in the following we also suppose that n > 3.

According to this assumption, the problem (1), (2) becomes

(5) y{n) + Xp(x)y = 0,

V«*)(o) = ... = y(i*)(o) = 0,

y^(b) = --- = y{j"-k\b) = 0

with k = 1 and (—l)n-1p(x) <0orfc = n-l and p(x) > 0.

We prove the following:

THEOREM 1. Let pi(x) be continuous on [a,b] with (-l)n_fcpi(x) < 0. For

every ra > 2 there exist P2(x) G C[a,b] such that (4) is satisfied but A2,m > Ai,m.

We obtain this theorem as a consequence of the following result regarding ex-

tremal points. The ith extremal point 0i(a) (cf. [6]), relative to the equation

(7) »(n)+p(i)y = 0

and system (6), is defined (when it exists) as the ith value of b in (a, oo) for which

there exists a nontrivial solution of (7) which satisfies (6).

Let us suppose now that fc = n - 1; in agreement with Butler and Erbe [3]

we say that the system (6) is admissible if, having called s the unique index from

0, ...,n — 1 that does not belong to {¿i,..*,*n-i}, we have jt < s. If we set

p(x) — Pj(x), j = 1,2, in (7), then the corresponding ith extremal point is indicated

by &j,i.

THEOREM 2. Letpi(x) and m be given, where pi(x) is continuous and positive

on [a, oo), and m > 1 [m > 2], and suppose that #ijm exists. If system (6) is not

admissable [admissible] there exists P2(x) G C[a, oo) such that P2(x) > pi(x) > 0,

@2,m exists, and #2)¿ > oi_¿ for 1 < i < m [2 < i < m}.

We remark that if (6) is admissible, then 02>i < 0i,i (see [2, Theorem 2]).

A comparison principle. Let us begin by stating some notation which we use

in the following.

We say that a nonnull vector of Rn, n — (n\,...,nn), has the D-property if

there exist no three indices i,j, k such that i < j < k and rjiVj < 0; njrjk < 0.
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We say that n has the strictly D-property if there exists an index i such that

the real numbers »71,..., <7¿-i, (—l)?7¿+i,..., (—l)nn are all different from zero and

have the same sign.

If 77 has the Z?-property, we denote by r(n) the greatest index such that rir(n) 7^ 0

and nr(n)r]i > 0 for every i < r(n).

Now let y(x) be the solution of the Cauchy problem

(8) y{n)+p(i)y = 0,   y(i)(0 = m+i,       ¿ = 0,l,...,n-l,

with £ G R and p(x) > 0.

If r]i — 6iti for a given I, 1 < I < n, the solution of (8) will be denoted by u¡(x).

These solutions will also be called the principal solution of (8).

Every solution y(x) of (8) can have only isolated zeros in a compact interval

[£,c],c > £ (cf. [4, Proposition 1, p. 81]). Also, for the form of the equation and

Rolle's theorem the quasi-derivatives of y(x), that is y(x),y'(x),... ,y^n~1\x), can

have only isolated zeros.

Let z\ < ■ ■ • < zm be the ordered set of the zeros (eventually empty) of the quasi-

derivatives of y(x) in an interval (£, c] and let Y(x) be the vector (y(x),y'(x),...,
y{n-1](x)).

LEMMA 1. Ifn has the D-property, then Y(x) has the strictly D-property for

x > £. Moreover y^3\x), 0 < j < n — 1, vanishes at the point Zi, i > 1, if and only

if j = (r(r¡) — i) modn.

PROOF. It is not restrictive to assume nr[v) > 0. Let e > 0 such that 0 < e <

z\ — £. In the interval (£, £ + e) the functions y^'(x) are all positive and increasing

for i = 0,..., r(n) — 2; all negative and decreasing for i — r(n),r(n) + 1,..., n - 1,

while y^r^~l\x) is positive and decreasing. This situation can change only if

y(-T(v)-i)(x) vanishes. Therefore, if z\ exists, it must be a zero of y^T^~v>(x),

moreover only this quasi-derivative of y(x) vanishes at this point, and Y(x) has the

strictly D-property for x € (£, z-\\. This argument can be repeated in every interval

(zí, Zi+i], i = 1,..., m - 1, proving the lemma.

Let j, 0 < j < n — 1, be a fixed index and consider the functions u^ (x), u2 (x),

... ,Un(x). Denote by W\ < ••■ < wm the ordered set (possibly empty) of the

zeros of these functions on an interval (£, c].

LEMMA 2. u\3 (x), 1 < / < n, vanishes at the point Wi, i > 1, if and only if

I = (i + j) modn.

PROOF. The functions u¡(x),Ui(x), h ^ /2, cannot have a common zero W{

on (f,c], otherwise there is a nontrivial linear combination v(x) of them with two

quasi-derivatives which vanish at un; since the vector (v(£),v'(£),... ,^n-1H0)

has the £)-property, this is in contradiction to Lemma 1. Moreover between two

zeros of uf' (x) there is a zero of every function uf'(x), I ^ Ji; otherwise there exists

(see [4, Lemma 1, p. 4]) a nontrivial linear combination of two principal solutions

with two quasi-derivatives which vanish at a point xo > £, again in contradiction

to Lemma 1.

Since u^i(£) = 1 and u\3 (£) = 0 for every I ^ j + 1, from the preceding

observations it follows that if w\ exists, it must be a zero of ul^^x).
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Suppose now that the lemma is true for w\,..., W{, but not for «;»+!. This means

that Wi is a zero of u\3'(x) and, if I < n [I = n], that w¿+i is a zero of u¡ (x), with

l\ jí I + 1 [li/ 1]. Since all zeros wt, t < i, are simple, it follows that

u?\wi+1)u$1{wi+1) < 0        [u^(wz+1)u[j)(wt+1) > 0].

So there exists a > 0 [a < 0] for which vi(x) = ui(x) + craj+i(x) [v\(x) = un(x) +

aui(x)] is such that vf (w¿+i) = 0.  As u¡   (w¿+i) = 0, there exists a nontrivial

linear combination V2(x) of v\(x) and u^(x) which has two quasi-derivatives which

vanish at w¿+i, but the vector («2(£)i■ • • ,v2~   (£)) ^^ the D-property and this

contradicts Lemma 1.

The following proposition gives us a criterion to compare the zeros of two solu-

tions of the Cauchy problem (8).

PROPOSITION. Suppose that u\3\x), j + I < I, has m zeros, wi < ■ ■ ■ < wm,

on (£, c]. Ifn is a vector with the D-property such that j + 1 < r(n) < I and rji ^ 0

for at least one index i ^ Z, then the j -derivative of the solution y(x) of (8) has

at least m zeros z\ < ■ ■ ■ < zm on (£, wm) and z% < Wi for every i. Moreover if

I = r(n), y^(x) has exactly m zeros on (£,wm).

PROOF. It is not restrictive to assume <7r(77) > 0, so that m > 0 for 1 < i < r(n),

r)i < 0 for r(n) + 1 < i < n. Suppose first that / — r(n). From Lemma 2 it

follows that at the point Wi we have for all the indices t ^ I, either r?t = 0 or

sgn[?ytii( (wi)] = (—1)\ Since rjt ^ 0 for at least an index t ^ I, from the relation

yO)(x) = Y^i=irliui (x) and by continuity it follows that y^3\x) has a zero in

every interval (w¿, w¿+i), i = 1,... ,m— 1. But r(n) > j + 1 so that y^'(x) > 0 for

£ < x < £ + £ and e sufficiently small; this implies that y^(x) must have a zero also

in the interval (£,u>i). If y^3\x) has two zeros in an interval (u>i,Wi+i) or (£,wi),

then it is possible to consider a linear combination v(x) of y(x) and ui(x) which

has two quasi-derivatives which vanish at a point xq > £. Since r(n) — I, the initial

conditions of v(x) determine a vector with the D-property and this contradicts

Lemma 1.

If I > r(r¡), then by Lemma 2 u^.VJx) has m zeros w[ < w'2 < ■ ■ ■ < w'm on

(£, wm) and w!¿ < u>i for every /'. Now if 7?¿ ̂  0 only for i — r(r¡), then the proof is

trivial; otherwise the conclusion follows from the case I = r(n).

We consider now the particular case of problem (8) for which £ = 0 and p(x) is

constant, that is p(x) = fc", fc > 0. The problem becomes

(9) y^+kny = 0,    yW(0)=m+U        i = 0,1,... ,n-I.

Since in this case we are interested in the dependence of fc, we indicate the

solution of (9) with y(x, fc) and the principal solutions with ui(x,k), 1 < / < n.

For every fc > 0 the principal solutions are oscillatory (see [6, Remark, p. 188]).

If n is a vector with the .D-property, then from the Proposition the solution of (9) is

also oscillatory for every fc. Then it is possible to consider the function h(k) which

associates the abscissa of the first zero of y(x, fc) in the interval (0, +oo) to fc.

LEMMA 3. Let n be a vector with the D-property and y(x, fc) be the solution of

(9).  Then

lim   kh(k) = M > 0
fc—» + 0O
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and

k^dJ^k^/dxJ^{h^k)-+0°

for every i such that 2 < i < n — 1.

PROOF. From the relations

(10)

if follows that

y(x,fc) = ^r/¿u¿(x,fc),
¿=i

Ui(x, fc) = fc1_íu¿(fcx, 1), i = 1,2,..., n,

ß{j)y " ,    .     dU)u-
(11) |_|(Ä(A:)1/s) = ^;^i-^£-^(fcÄ(fc),i).

j=i

For our definition, h(k) is the first positive zero y(x,k), therefore kh(k) is the first

positive zero of y(x/k, fc) = Y17=i f?ifc1_íu¿(x, 1). Let t be the first index such that

rjt 7^ 0. For fc —* +oo, kh(k) tends to the first positive zero wi of ut(x, 1). Since

(d^ut/dx^)(wi, 1) t¿ 0 for j = 1,2,... ,n— 1 by Lemma 1, the proof of the lemma

then follows by relation (11).

Proof of Theorem 2. Let system (6) be nonadmissible.

Let s be the unique index which does not belong to {n, ¿2, • • ■, in-i}', then 0¿,¿(a),

I = 1,2, is the ith zero of the jith derivative of the solution us+\(x) of (8), where

p(x) = pi(x) and £ = a. Let xi be the first zero greater than a of tts+i(x). Since

ji > s, from Lemma 1 it follows that a < x\ < 01,1(0). We denote also by u«(x)

the principal solution un(x) of (8), where p(x) = pi(x) and £ = xi, and by #¿(xi)

the ith zero greater than xi of u*    (x).

Let us suppose first that 0m(xi) exists. By Lemma 1, u^^xi) < 0 for i =

1,..., n —1. Applying the Proposition with £ = xi and I = n it results that 0¿(xi) >

9i,i(a) for i = í,...,m. Since the zeros #¿(xi) are simple, by the continuous

dependence of the initial conditions and the Proposition there exists x < xi and

S > 0 such that for every vector 7, 7 = (^i,^,- ■ •, 7n), with 7„ = 1 and 0 < 7¿ < 6

for t = 1,... ,n — 1, and for every xo G [x, xi] the jith derivative of the solution of

the problem

y{n}+Pi(x)y = 0,    y{i)(xo) = n+i,       i = 0,...,n-l,

has exactly m zeros z\ < ■ ■ ■ < zm in (xo, öm(xi)) and we have that

(12) Oi,i(a) < Zi,        i = l,...,m.

Now let n be the vector whose components are ni = itg!^ (x). By Lemma 3, there

exists fco such that h(ko) + x < xi, fcg > max{pi(x),x G [a, xi]}, and if y(x,k) is

the solution of (9) it follows that

(13) 0<-^(h(ko),ko)/-^z^(h(ko),ko)<6,        ¿ = l,...,n-2.
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Consider the function

Pi(x) for a < x < x,

p(x) — l  ko for x < x < x + h(k0),

Pi(x) for x > x + h(ko).

For Lemma 1 the jith derivative of the solution üs+i(x) of (8) with p(x) = p(x)

and £ = a does not vanish in (a, x + /i(fcn)]; from (13) and (12) it follows then that

the ith zero of ù,+i(x) is greater than 0¿,i(a) for every i < m. The existence of

a continuous function P2(x) > p(x) which verifies the theorem then follows by the

fact that the zeros of Û3+1 (x) are simple and from the classical result on differential

equations.

Consider now the case for which Om(xi) does not exist. Since the principal

solutions of (9) are oscillatory, from (10) and Rolle's theorem it follows that the ith,

i > 1, zero of u^i (x, fc) tend to zero for fc —► +oo. By Lemma 1 the vector n, whose

components are rji = u^i (#i,m(a)), i = 1,..., n, has the D-property, therefore for

the Proposition also the ith zero of the jith derivative of the solution of (9) which

correspond to this vector tends to zero for fc —> +oo. So it is possible to consider

a function p'i(x) such that p[(x) > pi(x), p'i(x) = pi(x) for a < x < #i,m(a), and

the point 0m(xi) corresponding to the new function p'i(x) exists. The proof of the

theorem then follows from the preceding case.

Let (6) be admissible.

By Lemma 1 the first zero xi of us+i(x) belongs to the interval [6iii(a),6i^(a)).

Therefore if we proceed in the same way as in the case for which system (6) is

not admissible, we can prove the existence of a function P2(x) > Pi(x) such that

@2,i(a) > 6i,i(a) for 2 < i < m and this completes the proof of the theorem.

Proof of Theorem 1.  Suppose first that fc = n — 1.

The function pi(x) can be considered to be defined on all of the interval [a, +oo)

setting pi(x) = pi(6) for x > b. If system (6) is admissible, then Ai_i > 0

(see [5, Corollary 3]). Moreover Ai>m is the rath eigenvalue of problem (5), (6),

where p(x) = pi(x), if and only if b is the rath extremal point relative to equation

?/") + Ai>mpi(x)y = 0 and system (6) (see [5, Theorem 3]). By Theorem 2 there

exists P2(x) > pi(x) such that the rath (ra > 2) extremal point relative to the

equation y^n> + AiiTnp2(x)y = 0 and system (6) is greater than b. Since the positive

eigenvalues of (1), (2) are decreasing functions of the point b (see [6, Corollary 5]),

the rath eigenvalue Am of problem (5), (6), where p(x) = AiiTOp2(x), is greater than

1. Therefore Am = A2,m/Ai,m > 1 and then A2,m > AijTO.

If the system (6) is not admissible, then Ai,i = 0 and Ai,m > 0 for m > 2;

therefore we can prove the theorem as in the preceding case using Theorem 2.

Suppose now that fc = 1.

We remark that y(x) is a solution of problem (5), (6) if and only if the function

z(x) = y(b + a — x) is a solution of problem

(14) zin)+ (-l)n\p(b + a-x)z = 0,

zÜ\)(a\   =   ...   =   zÜn-k)(a\=Q

(15)
z^(b) = --- = z^(b)=0.
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Therefore the eigenvalues of problem (5), (6) are the same as the eigenvalues of

problem (14), (15). It follows that the case fc = 1 can be reduced to the case

fc = n — 1, and this completes the proof of the theorem.
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