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WEAK SPECTRAL SYNTHESIS

C. ROBERT WARNER

ABSTRACT. As an approach to the union problem for sets of spectral synthesis

(S-sets), the class of weak S-sets is introduced. This class contains all finite

unions of S-sets, and it has many properties analogous to those of Calderón

sets. It is closed under the operation of forming finite unions, but, in contrast

to Calderón sets, it is not closed under countable unions.

A major open problem in commutative harmonic analysis is the union problem,

the question of whether the union of two S-sets is an S-set (see Rudin [8, p. 172],

and Graham and McGehee [3, p. 71]). In connection with this problem, the author

considers the class of weak S-sets (see below for definition). This class is closed

under the operation of forming finite unions, contains every S-set, and these sets

have the property that if the boundary of a closed set is a weak 5-set, so is the set.

In general, the properties of weak S-sets resemble those of Calderón sets. However,

unlike Calderón sets, there is a sequence of weak S-sets whose union is a closed set

which is not a weak S-set.

The idea of investigating weaker forms of spectral synthesis has been discussed

by Herz [4], Domar [2], and Müller [7], but these authors, for a class of sets associ-

ated with a given notion of weak spectral synthesis, did not examine set-theoretic

properties of the class, so the present paper has an emphasis which is quite different

from theirs.

The discussion is largely restricted to the context of locally compact abelian

(LCA) groups which are not discrete. If G is the character group of the LCA group

T, then A(G) is the algebra of Fourier transforms of functions in the convolution

algebra L1(r). When A(G) is given the usual Lx(r) norm (i.e. ||/|U(G) = llalli,1 (r)

if (^ = /), A(G) becomes a commutative regular semisimple Banach algebra iso-

metrically isomorphic to L1^).

We specify the following nearly standard notation. Let E be a closed subset of

G. Then K(E) = {/ G A(G): f = 0 on E}, j(E) = {/ 6 A(G): f has compact
support disjoint from E}, and J(E) is the closure of j(E) in the A(G) norm. The

zero set Z(I) of an ideal J in A(G) is defined by Z(I) = Ç\{Z(f): f G I}, where
Z(f) denotes the zero set of the function /. The smallest ideal with zero set E

is j(E); the smallest closed ideal with zero set E is J(E), and the largest closed

ideal with zero set E is K(E). If J(E) = K(E), then E is the zero set of a unique

closed ideal, and E is a set for which spectral synthesis holds (E is an S-set). If

for each / in K(E), the closed ideal 1(f) in A(G), generated by /, is the same

as the closure of the ideal / • j(E), then E is a Calderón set, or a C-set. Every

C-set is an S-set, but it is not known whether the two classes of sets coincide. Sets
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which satisfy a condition at least as strong as the C-set condition are called sets

of strong synthesis. For harmonic analysis, see the monographs of Benedetto [1],

Graham and McGehee [3], Katznelson [5], and Rudin [8]. For Banach algebras,

see Graham and McGehee [3], Katznelson [5], and Stout [9]. For results on weak

spectral synthesis, see the interesting papers by Kirsch and Müller [6], Domar [2],

and Müller [7].

1. Weak S-sets for Banach algebras. From this point on, let A be a commu-

tative regular semisimple Banach algebra with maximal ideal space A (A), Gelfand

transform x —> x, and let £ be a closed subset of A(A). If J(E) ^ K(E),

then E is not an S-set for A, and the quotient algebra K(E)/J(E) is a radi-

cal algebra. Hence, if x G K(E), lim„ \\xn + J(E)\\l/n = 0, so, by definition,

\\xn + J(E)\\ = dist(xn, J(E)) and limndist(xn, J(E)) = 0 for each x in K(E).

One way in which this limit could be zero is for each x in K(E) to have a corre-

sponding integer N (depending on x) such that xN G J(E) (i.e. the coset of each

x is nilpotent in the quotient algebra).

1.1 DEFINITION. Let E be a closed subset of A (A), and let xGK(E). If there
exists an n > 1 such that xn G J(E), define n(x), the characteristic of x, to be the

smallest n for which xn G J(E). If no such power of x exists, define n(x) to be

infinite. E is a weak S-set if for each x in K(E), n(x) is finite; the characteristic of

E, £(E), is defined by Ç(E) = sup{n(x): x G K(E)}, and E is an r-set if £(£) = r.

The class of S-sets is the same as the class of 1-sets, so the union problem is the

question of whether a finite union of r-sets is an r-set for the case r = 1. A result due

to Rudin [8, p. 174] shows that if G is an infinite compact abelian group, then there

is an / in A(G) such that the closed ideals I(fn), n = 1,2,3,..., are all distinct.

Thus, G contains a closed set (Z(f)) which is not a weak S-set. Varopoulos [10],

shows that in this notation, £(E) = \(n + l)/2] if E is a sphere in Rn, so that, by

changing n, one can make the value of £ on Rn as large as desired. One can use this

result to show that in T°° there are weak S-sets of arbitrarily large characteristic.

The following theorem answers the question of whether £(E) can ever be infinite if

E is a weak S-set.

1.2 THEOREM. Let A be a commutative regular semisimple Banach algebra. If

E is a weak S-set in A(A), then £(E) is finite.

PROOF. For each n > 1, let Sn = {x G K(E):xn G J(E)}, and let H(E) =

(Jr^Li Sn- Then H(E) = K(E) by hypothesis. For each n, Sn is closed, and \x G Sn

if x G Sn and À G C. By the Baire category theorem, Sm has nonempty interior

for some m. Hence for some v G Sm and £ > 0, if u G K(E) and ||u — u|| < e, then

u G Sm, so that Au G Sm also, if A G C. We show that K(E) = Sm + Sm- Let

x G K(E) and let A G C be chosen so that ||a;/A|| < e. Then \\v + x/X - v\\ < £, so

v + x/X G Sm, and therefore Xv + x G Sm. Thus if y = —Xv and z = Xv + x, then

x = y + z, with y,z G Sm, as desired. With this representation of x,

x2m = (y + z)2m = ¿ ft™\y2m-kzk,    so x2m G J(E).

Thus n(x) < 2m for all x in K(E), i.e. £(E) < 2m.

REMARK. This proof shows that if B is an arbitrary nilpotent radical algebra,

then, for some N, xN = 0 for all x in B.
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1.3 THEOREM. If K(E) is finitely generated in A, then E is a weak S-set if

and only if the characteristic of each of these generators is finite.

PROOF. Let K(E) = I(xx,X2,..., xn) = X\A + X2A +-h xnA, and let m be

the largest of the characteristics of these n generators, so each of these generators

belongs to Sm. Then a±x\ + a2X2 + • • • + anxn G Snm if a¿ G A, i = 1,2,3,..., n.

Since Snm is closed, K(E) Ç Snm, i.e. E is a weak S-set. The converse follows

from the definition of a weak S-set.

2. Weak S-sets for A(G).

2.1 THEOREM. If E is a closed subset of the nondiscrete LCA group G such

that the boundary of E is an r-set, then £(E) < r + 1.

PROOF. If / G K(E), there exists a sequence {uk} in j(bdryE) such that

uk -> fr. Hence ukf -* fr+1 and ukf G J(E), so fr+ï G J(E).

2.2 THEOREM. IfEy and E2 are weak S-sets, so is ExLiE2, and £(£1 U£2) <

£(£70-KW

PROOF. Let £(£1) = m, £(E2) = n, and suppose that / G K(E1\JE2) and e > 0

are arbitrarily chosen. Then there exists a u in j(E\) such that ||/m— u|| < £/2||/"||,

and a function v in j(E2) such that ||/n -v\\ < e/2||u||. Thus \\fm+n -uv\\ < e and

uv G j(E1l)E2). Hence n(f) < m + n for all / in fc^iUE^), so £,(Ei\JE2) < m + n.

REMARK. This result shows that the collection of weak S-sets is closed under

the operation of forming finite unions so that, in particular, finite unions of S-sets

are weak S-sets.

2.3 THEOREM. // the union and intersection of two closed sets are weak S-sets,

then so also are the two closed sets.

PROOF. Let E — Ex U E2 be the union, F = Ei n E2 be the intersection of the

two sets, and let £,(E) = m, £,(F) = n.

If / G K(Ei), then / G K(F), and there exists a sequence {«fc} in j(F) such

that uk -» /". Thus ukf -+ fn+1, and £,insupp(ufc/)n£,2 = 0. By the normality

of A(G), for each k there corresponds a function Wk G j(E2) such that Wk = 1 in

a compact neighborhood of Ei (~l supp(ufc/), and ukWkf G K(E), so (ukWkf)m G

J(E). Since (ukf)m = (ukWkf)m locally on a neighborhod of E\ n supp(ufc/),

u™/m belongs locally to J(E) at each point of E\, and since J(E) Ç J(E\),

umjm e j'Ei). Hence fmn ■ fm = fmn+m g J(Ei) so that £(Ei) <mn + m, and

similarly {(.E^) < mn + m.

REMARK. This theorem shows that weak S-sets can be constructed "polyhe-

drally" in the same way that C-sets can be (cf. Rudin [8, pp. 169-170] and Warner

[13, pp. 100-101]).

2.4 COROLLARY.   If £(bdryE) = n, then £(E)<n+l.

PROOF. Note that £(E \JW) = 1 and £(E P\'W)=n.
The following result is a corollary of work due to Varopoulos.

2.5 COROLLARY, (a) For each n > 1, the unit sphere E in Rn is an r-set,

where r=[(n+ l)/2] [10, Theorem 3, p. 379].
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(b) For each n > 1, Tn contains a small sphere which is an r-set, with r =

[(n + l)/2] [12, §9.1, p. 102].
(c) Let G be an LCA group, and H an S-set in G. If E is a closed subset of H

such that E is an r-set for A(H), then E is an r-set for A(G) [12, §4.4, p. 76].

(d) If r > 1, T°° contains a weak S-set for which i(E) — r.

(e) Every nonempty open set in T°° contains an r-set (for r = 1,2,3,... ).

PROOF, (a) Varopoulos proves that if / = K(E) and Im is the closed ideal

generated by the products /1/2/3 • • ■ fm, where flt /2,... ,fm G I, then J(E) =
F C /r-i C ... C 7 _ KiEy  Thus ctEy < rj and by a lemma of Graham and

McGehee [3, 11.2.10, p. 321] (with fc = 1), K(E) is generated by a single function

/, for which f-1 i J(E), so that £{E) = r.
(d) If m = 2r — 1, Tm is a compact subgroup of T°°, and by (b), Tm contains

an r-set E, which is an r-set in T°° by (c).

(e) Every open neighborhood of 0 in T°° contains a sphere whose intersection

with Tm contains an r-set.

2.6 THEOREM. There is a pairwise disjoint sequence {Ei} of weak S-sets in

T°° such that the union E — U¿^i &i ïS a compact set which is not a weak S-set.

PROOF (see Varopoulos [11, Chapter V, p. 18]). Let a G T°° and let {an} be

a sequence of distinct points all different from a, such that an —> a. Let {Um} be

a decreasing sequence of compact neighborhoods of a such that {a} = Dm=i U™-

There exists an mi such that a\ £ Umi, and a compact neighborhood Vn,(ai)

disjoint from Umi- Since an —» a, there is an r¿2 > nx such that an2 Gümi, and as

above, there is a disjoint pair of compact neighborhoods Um2(a) (with m2 > mi)

and Vn2(an2), both contained in Umi. By induction one obtains a pair {Umi},

{Vni} of sequences of compact neighborhoods such that {Vni} is a pairwise disjoint

sequence, and for each i > 1, Umi+1 and Vni+1 are disjoint subsets of Um¡ ■ By

Corollary 2.5(e), Vn¡ contains a set Ei which is an i-set for each i > 2. We let

Ei — {a}, and E = \J°l1Ei, so that E is closed. Let i > 1 be fixed. Since

£(£¿) = i, there exists an / G K(Ei) such that f%~1 $. J(Ei). Because Ei and

Ufc=¿¿ Ek are compact disjoint sets, and A(T°°) is a normal Banach algebra, there

exists a function u G j(Ufc=í¿ ^k) such that u = 1 on a neighborhood of Ei

If (tt/)i_1 G J(Ei), then f"1 = u*"1/*"1 on a neighborhood of £¿, so p~l G

J(Ei), which is a contradiction. Thus (uf)1-1 £ J(Ei), and J(E) C J(Ei), so

(uff'1 i J(E). Since uf G K(E), £(E) > i. This holds for every i > 1, so E is
not a weak S-set, by Theorem 1.2.

REMARK. If the appropriate minor modifications are made, the above proof

applies to any LCA group G for which 2.5(e) holds.
I would like to thank Professors John Benedetto and Robert Whitley for their

valuable advice.
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