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C. W. GROETSCH AND J. GUACANEME

ABSTRACT. It is well known that a linear operator equation of the first kind,

with an operator having nonclosed range, is ill-posed, that is, the solution

depends discontinuously on the data. Tikhonov's method for approximating

the solution depends on the choice of a positive parameter which effects a

trade-off between fidelity and regularity in the approximate solution. If the

parameter is chosen according to Morozov's discrepancy principle, then the

approximations converge to the true solution as the error level in the data

goes to zero. If the operator is selfadjoint and positive and semidefinite, then

"simplified" approximations can be formed. We show that Morozov's criterion

for the simplified approximations does not result in a convergent method,

however, Arcangeli's criterion does lead to convergence. We then prove the

uniform convergence of Arcangeli's method for Fredholm integral equations of

the first kind with continuous kernel.

1. Introduction.  A Fredholm integral equation of the first kind,

(1) /   k(s,t)x{t)dt = g(s),        c<s<d,
Ja

where fc(-, •) is a nondegenerate square integrable kernel, is a well-known example

of an ill-posed problem (see e.g. [7, 2]). By this we mean that, even if the solution

exists and is unique, the mapping g —► x of the data g to the solution x is discontin-

uous in the L2-sense. The discontinuity of the solution operator has dire numerical

consequences since in practice the data function g is the result of measurement and

hence is only imprecisely known. Small errors in the data can then lead to large

instabilities in the computed solution. The method of regularization is designed

to ward off these instabilities by replacing (1) with a certain well-posed problem

depending on a positive parameter. A central problem is then the choice of this

parameter as a function of the error level in the data. Arcangeli's method [1] is one

strategy for choosing the parameter.

We will find it convenient to deal with the abstract version

(2) Kx = g

of equation (1), where K:H\ —► H2 is a compact linear operator from a Hubert

space H\ into a Hubert space H2 (the inner product and associated norm in each

of the spaces H\ and H2 will be denoted (•,•) and || • ||, respectively). We suppose

that g E R{K), the range of if, and that the available data gs satisfies Hff-ff5!! < S

where 6 is an a priori known bound, determined for example by the quality of
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the measuring instruments. Tikhonov proposed to approximate the minimal norm

solution x of (2) by the minimizer x8a of the functional

(3) Fa{z;g8) = \\Kz-g8\\2+a\\z\\2.

Here a > 0 is a regularization parameter which effects a trade-off between regu-

larity (small ||z||) and fidelity (small \\Kz — g8\\) in the approximate solution. A

straightforward calculation shows that the unique minimizer of Fa {■ ; g8 ) is given

by
x* =(K*K + aI)-1K*gs

where K* is the adjoint of K. Tikhonov showed that a certain a priori choice

a = q((5) of q as a function of the error level 6 results in x8,s^ —> x as <5 —► 0.

Morozov amd Arcangeli independently, and at about the same time, provided

criteria for the choice of a which depend on the actual data g8 as well as the error

level 6. Morozov's criterion is

(4) \\Kx8a{S)-g8\\=6

and Arcangeli's criterion is

(5) \\Kxi{s)-g6\\=ó/Vc:.

In each case it can be shown that a unique such a{6) exists and that x8,^ -nas

6 -> 0 (see e.g. [2]).

We consider these parameter choice criteria for simplified regularization in this

note. For simplified regularization we show that the analogue of Arcangeli's crite-

rion leads to a convergent method, while that of Morozov does not. As an appli-

cation we prove under suitable conditions the uniform convergence of Arcangeli's

method for Fredholm integral equations of the first kind with continuous kernels.

2. Simplified regularization.  Consider the equation

(6) Aw = g

where A is a compact, positive semidefinite linear operator on a Hubert space H

(i.e., A — A*, (Ax,x) > 0 for all x G H). This equation is also ill-posed and we

assume it has a unique solution w. Given approximate data g8 we may try to

approximate w by

(7) «4 = (¿ + aJ)-y,

the unique minimizer of the functional

Ga{z;g8) = {Az,z)-2{g8,z) + a\\z\\2.

Notice that ordinary Tikhonov regularization applied to (6) results in the more

complicated aproximations {A2 +aI)~1Ag8. We therefore refer to (7) as simplified

regularization.

Let Ai > A2 > • • ■ > 0 be the eigenvalues of A and let ui, u2,... be associated

orthonormal eigenvectors. Then
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and hence the fonction

<¡>{a) = V¿\\Awsa-gs\\

is continuous, increasing, <j>{0) = 0, and limc^oo (¡>{a) = oo.  Therefore there is a

unique positive number a = a{8) satisfying

(8) \\Aw8a{8)-g8\\=6/^cÄb).

THEOREM 1.   If a — a{6) is chosen according to (8), then w^is) ~* w as ¿ -*• 0.

PROOF. First we note that a{6) —► 0 as 6 —* 0. This follows by the same

argument as in [2, Lemma 3.3.7]. To simplify notation we will replace a{6) by a in

this proof. First note that

Aw8a -g8 = {A + aI){A + al)~lg8 - aw8a - gs = -aw8a

and hence if a is chosen by (8), then

(9) |K|| = ||A^-gA||/a = ¿/«3/2-

Let wa be the idealized approximation using the exact data g:

wa = {A + aI)~lg.

Then

\\wi-wa\\ = \\(A + aI)-1(gs-g)\\<6/a.

However, ||w*|| - ||wa|| < ||iu£—iyQ|| < é/a and hence by (9) ||w*|| < ||«;Q||-f¿/a =

Ikall + sfitè/c?/2 = ||iua|| + V^lKH- That is, (1 - v^lKll < IKH- But,
wa — {A + aI)~1Aw and hence ||wa|| < \\{A + aJ)_1A|| ||iü|| < ||tu||. Since a->0

as 6 —> 0, it then follows that

(10) Jmllttf'H < HI-

Suppose now that {6n} is any sequence of positive numbers convergent to 0. Since

{wa(6 )} ^S bounded, there is some subsequence, which we again denote {w^,6 ,}

which converges weakly to a vector z E H. However,

= Wwtlsn)Wa(Sri)-* 0   asn^oo.

Therefore by the weak continuity of A,

0 =  lim {AwSn,r , - g8n) = Az - g,

i.e., Az = g and hence z = w. Also

\\w\\2 =  limK«;*"(fin))<|HI lim  K(MII-

From (10) we then have lim^^oo \\wJs J| = ¡|w;||. But in a Hilbert space weak

convergence along with convergence of norms implies strong convergence, therefore

wa(6 ) ~* w as n ~* °°- Hence for each sequence 6n —> 0, there is a subsequence of

iwa(S )} convergmg to w. That is, w*(¿) —► w as 6 -* 0.    D

The argument above can be modified in a straightforward manner to prove con-

vergence for certain analogues of the discrepanacy principle studied by Schock [6].
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It is also easy to show that if \\g — g8\\ < 6 < \\gs\\, then there is a unique positive

a = a{6) such that

(H) \\Aw8a(6)-g8\\=6.

This choice of a is the analogue of Morozov's method for simplified regularization.

However the choice (11) does not always lead to a convergent method for solving

(6). To see this suppose that 1 = Ai > A2 > ■ • ■ are the positive eigenvalues of A

and let ui,u2,- ■■ be corresponding orthonormal eigenvectors. Let g — u\, so that

w = u\. Also let Sn = An and g8n = uj + Anu„. Then

w8a" = (A-r-a^-y*1

" (g6n,ui) i i

12 =l^^r~>—u* = t~i—Ul +

However,

Aj + a 1 + a 1 + a/6n

Aw^n - g " = (A + al)w^n - g6n - awóan = -aw
a  >

and hence if a{8n) is chosen by the criterion (11), then 6n = a{6n)\\w^:g J|. In

particular, if ujV , —► w = u\, then a{6n) = 0{6n). But, by (12), w^,s , —> u\ if

and only if a{6n)/Sn —► oo, contradicting the fact that a{6n) — 0{6n).

3. Uniform convergence. We now use the theorem of the previous section

to establish the uniform convergence of Arcangeli's method for equation (1) under

the assumption that the unique solution x lies in R{K*) and the kernel fc(-, •)

is continuous. The assumption x G R{K*) has been used by Landweber [5] to

prove the uniform convergence of an iterative method for first kind equations with

continuous kernels in the absence of data errors (see also [3]). The same assumption

is used in [4] to provide an asymptotic order of convergence for Arcangeli's method

in Hubert space.

We take as our base Hubert spaces Hi = L2[a, b] and H2 = L2[c,d]. The L2-

norm and inner product will be denoted || • || and (•, ■), respectively, and the uniform

norm will be denoted || ■ W^. Note that each of the approximations x8a is in R{K*)

and hence is continuous since the operator K* is generated by a continuous kernel

(we assume that g6 E L2[c,d], but not that it is continuous). Also,

Kx8a = KK*{KK* + al)-lgs = Aw8a,

where A — KK* and w8a = {A + al)~1g8. If a is chosen by Arcangeli's method

(5), then ||Aty* - y6|| = ||Äx* — gS\\ = S/y/ä and hence criterion (8) is satisfied.

Therefore, by Theorem 1, ||u;* — w\\ —> 0 as 6 —» 0 where x = K*w.

THEOREM 2. Suppose k{-,-) is continuous and x — K*w for a unique w G

L2[c, d]. If a = a{6) is chosen according to (5), then \\x^s^ — x||oo —* 0 as 6 —> 0.

PROOF. For any s E [a, b] we have

x(s) = {K*w){s) =  /   k{t, s)w{t) dt = {ks iv)

and

xi(S) = {K*wsa)(a) = (ka,wi)
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where kg{t) = k{t,s).   Since the kernel Â;(-, ■) is continuous, we have, for some

constant M,

\x{s) - x8a{s)\ = \{ks,w- w8a)\ < M\\w -w8J,

and hence

11« — ar«||oo < Af ||w — w* || —► 0    as S -> 0.    G
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