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THE OSELEDEC AND SACKER-SELL SPECTRA
FOR ALMOST PERIODIC LINEAR SYSTEMS: AN EXAMPLE

RUSSELL A. JOHNSON

ABSTRACT. We give an example illustrating the relation between the Oseledec

spectrum (roughly speaking, the set of Lyapunov exponents) and the Sacker-

Sell (or continuous) spectrum for Bohr almost periodic linear systems.

1. Introduction. The purpose of this note is to illustrate by means of an ex-

ample the relation between the Oseledec (or measurable) spectrum [10] and the

Sacker-Sell (or continuous) spectrum [12, 13] for Bohr almost periodic linear sys-

tems

(1) x' = A{t)x       (x G Rk).

Our example complements a result of [7], according to which an endpoint of an

interval in the continuous spectrum is necessarily in the measurable spectrum. In

fact, equation (1) which we construct has a point in its measurable spectrum which

is an interior point of an interval in the continuous spectrum. In itself this property

is of no great significance; however, our equation enjoys an additional property of

"irreducibility": if xi(i), x2{t) are two nonzero solutions of (1), then there is a

sequence {in} such that the angle 6n between xi{tn) and x2(tn) tends to zero or n

as n —♦ oo.

Let us explain some of the terminology just used. One usually defines Bohr

almost periodicity using translation numbers, but it is convenient here to adopt

another starting point. Thus let C be the space of bounded, uniformly continuous

maps B from R to M^(R) = set of k x k real matrices. Give C the topology

of uniform convergence on all of R. Define the translation rt: C —> C: {TtB)(s) =

B{t + s) {BEC;t,sE R). If B E C, define the hull Y = YB of B to be cls{rt(ß)|i G
R}. We say that B is Bohr almost periodic (a.p.) if Y is compact. It turns out

that, in this case, Y may be given the structure of a compact, abelian topological

group with identity B and multiplication * satisfying rt{B) * ts{B) = rt+s{B) for

all s,t E R. Thus the map t —> rt{B) defines a dense imbedding of the additive

group (R,+) in (F, *).

Suppose now that A G C is a.p., with hull Y. Let p be normalized Haar measure

on Y. Consider the equations

(Ï) x' = Ä{t)x       (À G F, x G Rk).

The Oseledec theorem [10] tells us, among other things, that there is a set Em =

{ßi,... ,ßk} of real numbers with ßi < ß2 < • • ■ < ßk such that, for /¿-a.a. Ä E

Y, the equation (1) has linearly independent solutions xi(£),... ,Xk{t) satisfying
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limt_,00,limt_,_00í  1 In ||xfc(í)j¡ = /3fc- Also,/?H-Vßk = lim^oo t  l /0'tr A{s)ds.

In addition, if $(£) is the fundamental matrix solution of (1) satisfying $(0) = /,

then

lim r1ln||$(í)||=/3fc, lim   r1 In ||$(í)|| = ft.
t—*0O t—> — OO

The /3¿'s are called Lyapunov numbers, and are independent of A for /i-a.a. A G F.

The set Em is the Oseledec or measurable spectrum of A.

Next we consider the Sacker-Sell or continuous spectrum Ec of A. Recall first

that an equation

(2) x' = B{t)x       (x G Rk)

has exponential dichotomy if there exist constants K > 0, a > 0, and a projection

Q: Rfc —* Rfc such that, if í'(í) is the fundamental matrix solution of (2) satisfying

tf (0) = I, then

||*(i)Q*_1(a)|| <Ke-a(t-s) (*>«)•

||*(t)(I - Q)<H-\s)\\ < Ke""*8-"        (i < a)

(see, e.g., Coppel [1]). Define Ec = {A G R|x' = (A(f) - A7)x does noi have

exponential dichotomy} (see [12, 13]). It is known that Ec is a finite union of (at

most k) compact intervals, and that, for any A G F and any nonzero solution x{t)

of(l), _     _

lim,   lim   t  1ln||x(í)||    and     lim,   hm   t  1ln||x(i)||

all belong to Ec. That is, all upper and lower Lyapunov numbers are in Ec.

Clearly it is of interest to compare ETO and Ec. As we have already noted, an

endpoint of an interval in Ec is in Em [7]. For 2x2 systems (1), Millionshchikov

[8] showed that ETO is exactly the set of endpoints of intervals in Ec. This is no

longer true for three-dimensional systems; in fact we may take

where Ai(£) is 2 x 2 with EC(A,) = [-7,7], and 7 > 0 [9]. Then clearly {ßi,ß2,ß3}

= {—7,0,7}. However, if A{t) is not reducible to a system in block-form, then the

situation is less clear, and one might conjecture that, if (1) is (in some sense)

irreducible, then Em is the set of endpoints of intervals in Ec.

The example we will construct has the property that Ec = [61,62] but Em =

{61,0,62} with 61 < a < 62- To explain just how irreducible the example is, we

introduce the corresponding projective flow. Thus let P2(R) be the projective space

of all lines I through the origin in R3. Let P = F x P2(R). Define

Tt(Ä,l) = (Tt(Â),è(t)l) (*€R),

where $(£)/ is the image of / under $(i) {l E P2(R),À E Y). Then {ft\t G R}

defines a flow [3] on P. It turns out that P is a proximal extension of F: if

h, l2 E P2(R) and A E F, then there is a sequence {tn} such that distance

{$(tn)li,$(tn)l2) —> 0 as n —> 00. This is the property referred to in the first

paragraph.   More is true:   P contains a unique minimal set [3] M, which is an
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almost-automorphic extension of Y [5, 14]. This means that, for y in a residual

subset F0 c F, the fiber My = M f) {{y} x P2(R)) reduces to a single point. Thus

our example differs from those constructed in [4], where M = P, and Em is a single

point.

The moral, then, is that A is trying simultaneously to be nilpotent (M is al-

most automorphic) and to have three distinct real eigenvalues (Ec consists of three

distinct points).

2. The example. The construction to follow is basically an elaboration of one

of Millionshchikov [9]. The desired matrix function A{t) will be a uniform limit

of T„-periodic, continuous matrix functions An{t), where Tn_)_i = jnTn for whole

numbers jn {n = 1,2,...). Thus A{t) will be limit-periodic.

First of all, we fix some notation. If 0 ^ x G R3, let [x] be the unit vector

x/(x,x)1/2 E S2. Let £o = 0, and let {en|n > 1} be a decreasing sequence of

positive numbers such that Ylr^=i £n = 1- We will consider systems

(1)„ x' = A„(i)x       (xgR3);

let $„(i) be the fundamental matrix solution of (l)n which satisfies $n(0) = /.

Let Ai(i) be a continuous matrix function of period Ti > 4 with the following

properties:

(3)i Ai(í)=0        (Í G [0,1] Upi-^Ti]);

(4)i trAi(i) = 0.

Suppose furthermore that there are linearly independent unit vectors ui,v\,wi

such that

$i(Ti)ui = (exp-5Ti)«i,

(5)i $i(TiM=i>i,

•i(2i)wi = (exP5Ti)«;i,

and

(6)i 9{u1,v1)<{e1)2,        6{uuw1)<{e1)2.

Here 6{a, 6) denotes the angle between the unit vectors a and 6; we always suppose

that 0 < 6{a, 6) < it radians. Finally, assume that

(7)i -o.l^^lnll-MiOVWII^S.l        (M s).

Clearly a function Ai(i) can be found for which (3)i-(7)i are valid.

Now suppose that An is a continuous matrix function of period Tn > 4 such that

/ T n-l 1\

¿=1

(3)n A„(í)=0 ÍÍG[0,1]U   Tn-2+^£,,T„

(4)„ trA„(i)=0.
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Assume in addition that un,vn,wn are linearly independent unit vectors such that

$n(Tn)un = (exp-7„Tn)ti„,

$n{Tn)vn = Vn,

(5)n
n— 1

$n{Tn)wn = (exp7nT„)wn,        in > 5 - ]P e¿;

¿=i

(6)„ 0(u„,v„) < e2,        0(un,w„) < £2;

(7)„ -5.1<-i-ln||*n(i)$-1(S)||<5.1       (t # •)-
t — s

Our goal is to find a continuous matrix function An+i{t) and an integer jn > 1

such that An+i has period Tn+i = jnTn, and such that

(8)„+i ||An+i(í)-An(í)||<4£n       (ÍGR).

To begin, let Pn be the plane in R3 spanned by un and wn. Using a technique of

Millionshchikov (to be described shortly), we can choose an integer Ji > 1 such

that, if j > J\, then a rotation R of R3 can be found which preserves Pn, fixes

vectors normal to Pn, satisfies ||Ä —7|| < 2e2, and has the property that the matrix

H — R o $n(jTn) fulfills the following conditions:

There are unit vectors un+i,wn+i G Pn which are "between" (in

(9) the obvious sense) un and wn such that Hun+i — (exp —7jTn)un+i

and Hwn+i = exp{^jTn)wn+1 with 7 > 5 - £"=1 e¿;

(10) 6{un, Un+i) < 0(un, wn+1) < \e2n+l min(l, 9{un, wn)/6{un, vn));

(11) 9{un,wn+i) > g£2+1min(l,9{un,wn)/9{un,vn)).

We briefly indicate how Ji,R, and the vectors un+i,«;n+i may be found. Let

r(i) be the restriction of $„(t) to Pn. Then T(Tn) is a linear mapping of Pn to

itself which has eigenvectors un,wn with eigenvalues <5_1, 6 respectively, where

6 = exp7„Tn and 7„ > 5 - ^™=il£¿- Consider unit vectors x E Pn which are

between un and wn. If x ^ un, then limJ_>00[r(jTn) • x] = Wn; i.e., x is rotated

towards wn as j increases. Moreover limy_oo(l/jTn)ln ||r(jTn)x|| = 7„.

Let 9j{x) be the angle between un and [T{jTn)x]. Then 9j{un) = 0, and

\\xa.j-¥OO0j{x) — 9{un,wn) if x ^ un. For any 0 < r < 9{un,wn), let R be the

rotation of the plane Pn which displaces wn towards un by r radians. Then for

large j, there will be exactly two vectors between un and wn which are eigenvectors

of R o T{jTn). If we choose

9{un,wn) - ±el+1m\n(l,9{un,wn)/9{un,vn))

< r < 9{un,wn) - len+lmm{l,9{un,wn)/9{un,vn)),

then, for large j, (9)—(11) will hold for the eigenvectors un+i, wn+\ of R o T{jTn)

(see [9], also [6, §5]).
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Returning to the construction of An+i, fix j > J\. Let 6 be a continuous map

from R to the set of antisymmetric, real, 3x3 matrices such that 6 vanishes outside

of [0, £„], supt ||6(i)|| < 4en, and such that the 3x3 matrix solution of

n' = b(t)V,        r;(0) = /,

satisfies n(en) = R. Consider the function

n—1

An{t),    0<t<jTn-2+^el,

Du\ — ) i=i
n-l

jTn - 2 + ^e, < t < jTn;

3=1

we extend B{t) to all of R by jT„-periodicity. Let ^{t) be the fundamental matrix

solution of x' = B(t)x which satisfies <£(0) = I. Then ^{jTn) = H = R o $n{jTn).

We claim that, if j is sufficiently large, we can set An+i(£) = B{t) and fulfill all

conditions (3)n+i-(8)n+i. In fact, (3)n+i, (4)n+i, (7)n+i, and (8)„+i are true for

any j > J\, if An+i = B. Moreover, for j > J\, the vectors u„+i and wn+\ satisfy

the corresponding parts of (5)n+i and (6)n+i. Using (4)n, (9), and Liouville's

formula, we see that there is a unit vector vn+\ G R3 such that Hvn+i = vn+i;

i.e., (5)n+i is completely satisfied. So we need only show that j and vn+i can be

chosen in such a way that the first part of (6)„+i holds.

To do so, once again fix j > J\. Consider the spherical triangle An with vertices

un,vn,wn; thus An C S2. The vector wn+x lies on the side unwn (i.e., arc of the

great circle containing un and wn) of An. Let p be a general point on the side unvn

of A„. Let pp be the measure, in radians, of the spherical angle with vertex wn+i

and sides unwn+i, unp.

Let pp{t) be the measure of the spherical angle with vertex [$n{t)wn+i] and sides

determined by [$n(i)un], [$„(t)p]. Note that, if p ^ un, then lim^oo pp{jTn) =

Poo = measure of the angle with sides unwn and wnvn. Hence by (10) and spherical

trigonometry, one has that, if 6{un,p) > \en+l, then for large j, pp{jTn) > pp{0).

On the other hand, if 9{un,p)/9{un,vn) < 9{un,wn+i)/9(un,wn), then for large j,

<Pp(JTn) < <Pp(0). (Note that, by (11), 9{un,wn+i)/9{un,wn) > c > 0, where c is

independent of j.) Thus there exists J2 > Ji such that, if j > J2, then there is a

point po with 9{un,po) < \¿n+i an(^ fpoU^n) = <Pp0{ty- In particular, the plane

Wn spanned by wn+i and po is invariant under H = Ro $„(jTn).

Fix j > J2. We know that there is a unit vector vn+i such that Hvn+i — fn+i-

We also know that 9{un,Po) < \£n+i- Hence we can show that the first part of

(6)n+i holds by proving that vn+i can be chosen to lie on the arc a = wn+ipo. To

do so, note that, if x G a is close to w>n+i, then [Hx] is even closer to wn+i. This

is because wn+i is an eigenvector corresponding to the largest eigenvalue of H. On

the other hand, the arc {[iz"x]|x G a} is longer than a, hence [Hpo] is further away

from wn+i than is po itself. Thus there is a point xr¡ E a such that [Hxq] = xo,

and we can take Un+i = xrj-

We have shown that, if j > J2, and if An+i(i) = B{t) (t E R), then (3)n+i-

(8)n+i are satisfied by the system (l)n+i.

It will be convenient to impose a further condition on j. Namely, let Un C S2

be an open set containing the arc unvn such that diameter Un < £n and wn é Un.

uyu;  —

6   t jTn - 2 + J2^



266 R. A. JOHNSON

We can choose J3 > J2 such that, for j > J3:

(12)n+i if ±x <£[/„, then either 9{Hx,wn+i) < £n+i or 9{Hx, -wn+i) < en+1.

Now fix jn > J3, and let Tn+i = jnTn, An+i = B. By induction, we obtain a

sequence of matrices Ai, A2,..., all periodic with periods Ti, T2 = j\T\, T3 — j2T2,

etc. Conditions (3)n-(8)„ (n > 1) and (12)n (n > 2) hold for the corresponding

systems (1)„. Let A{t) = lim«-^ An{t), so that A(i) is limit-periodic (see (8)„).

Let F be the hull of A, and consider the equations

(1) x' = Ä{t)x        {Ä E F).

Let Ec be the continuous spectrum of equation (1). We claim that Ec is a single

interval. For, if not, there would exist a projection Q : R3 —> R3 and real num-

bers ai < a2 < a3 < o4 such that: (i) Q / 0, Q / 7; (ii) if 0 ^ x = Qx,

then limt^±oo,hnit_>±00 i"1 In ||$(i)x|| G [c*i,/?i]; (iii) if 0 ^ x = {I — Q)x, then

limt-,±oo, lhnt_^_|_00 f.-1 In ||$(¿)x|| G [02, ß2] (see [12, 13]). Now we use a pertur-

bation theorem of Coppel [1] to conclude that, for large n, there are projections

Qn -> Q and constants a™ (1 < i < 4) such that the above statements hold with

$„(i) in place of $(i). It is easily seen, however, that the range of Qn must be a

sum of eigenspaces of $„(T„). Thus Qn —► Q is inconsistent with (6)n for large n,

and we conclude that Ec is indeed a single interval.

Let Ec = [61,62] with 6i < 62. Let Em = {ßi,ß2,ß3} (ft < ß2 < ßs) be the

measurable spectrum of equations (1). Then ßi — 61, ß3 = b2 [7]. It follows from

(7)„ of our construction that ||$(f)$_1(s)|| < exp5.1(£ — s) for all t > s. Hence

In ll^t)^-1^)!! < 5.1(i - s) for t - s > 0, for all Ä E F; we use the fact that
{rt(A)|t G R} is dense in F. Hence 62 < 5.1. Similarly 61 > -5.1. However, we

also know that 62 > limt^ooi-1 In ||$(i)|| (e.g., [2, 7]). Hence by (5)„, 62 > 4.

Similarly 61 < —4. Since tr A{t) = 0, we have ß\ + ß2 + ß3 = 0. It is now clear that

ßi i1 ßi-, ßi ¥" ßs- Thus Em consists of three distinct numbers.

Next we consider irreducibility properties of equation (1). We show first that

P = F x P2 (R) contains a unique minimal set M which is an almost automorphic

extension of the base F. To do so, fix attention on A E Y. Let A„ be the spherical

triangle with vertices u,v,w {n > 1), and let {in} = D^Li An- Let {sk} be a

sequence such that rSk{A) —> A. Using the duality theory of compact, abelian

topological groups [11], one can show that, for fixed n, Sk modT„ —► 0 as k —> 00.

Fix n, and choose K = K{n) such that, if k > K, then \sk modT„| < \. It follows

from our construction that, if m > n and j > 0, then {[$m(jT„)x]|x G Am} C An

(see (5)n, (9), and note that An+i C An for n > 1). Since A(i) = Am{t) for

0 < t < Tm, and since Am{t) — 0 for Tm — 1 < t < Tm+x (m > 1), we see that

[$(sfe)xo] G An for k > K. Projecting from 52 to P2(R), and recalling from §1

the definition of the flow f on P, we conclude that fSk{A,Iq) —> (A,lr¡) as k —> 00.

Here Ir, E P2(R) is the line containing xr¡.

Let M = cls{rt(A,/0)|í G R} C P. Then Mn({A} xP2(R)) equals {{A,l0)}, i.e.

is a singleton. It follows without difficulty that M is a minimal, almost automorphic

extension of F (see, e.g., [14]).

To prove uniqueness of M, suppose that Mi ^ M is another minimal subset of

P. Then Mi nAf = 0. Let (A, ¡i)eMi, and let 0 ^ x be an element of the line ¿1.
Then [$(£)x] is bounded away from [$(i)xo], uniformly in t E R. This contradicts

(12)n+i and the fact that A{t) = An{t) for 0 < t < Tn, when n is taken large.
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Finally, we show that P is a proximal extension of F. By minimality of F, it is

sufficient to show that, if h,l2 E P2(R), then there is a sequence tk —> oo such that

distance ($(ijt) -h, ${tk)-h) —► 0 as k —> oo. However, this follows from conditions

(12)n+1 and the relation A(i) = An{t) (0 < t < Tn, n > 1). Thus we have shown

that (1) has all the properties set out for it in the Introduction.

It is worth noting that, by our construction, the planes {Pn} satisfy P\ — P2 =

P3 = ■■-. If we choose Ai in such a way that Pi is invariant under $i(i) (as we

certainly can do), then M is in fact a subset of F x Pi.
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