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INVARIANT SUBSPACES FOR OPERATORS
IN SUB ALGEBRAS OF L°°{p)

TAVAN T. TRENT

ABSTRACT. For each nontrivial subalgebra A of L°°(p.), let A2(fj) denote the

L2(¿t)-closure of A and let A = A2 {pi) n L°°(p). Then A2 {p.) has a nontrivial

^-invariant subspace.

We extend a recent invariant subspace result of Thomson [4]. Also, it is hoped

that the Hilbert space formulation in this paper will more clearly expose some of

the fundamental ideas of Thomson's ingenious argument and will display it as an

extension of the preliminary strategy used by Brown [1],

Let A denote a subalgebra of L°°{u), containing constants, where p is a positive,

finite, compactly supported Borel measure on the complex plane C. To avoid

trivialities we assume that L°° (/x) is infinite dimensional (i.e. p is not a finite linear

combination of point masses) and that A contains a nonconstant element. By A2{p)

we mean the L2(/x)-closure of A. Let A — A2{p) D L°°(p). Then A is an w*-closed

subalgebra of L°°{p), A2{p) = A2{p), and A ■ A2(p) = A2(p) (see Conway [2]).

In [4] Thomson shows that if 1 and z belong to A, then A2{p) has a nontrivial

ií-invariant subspace. This means that there exists a subspace K with {0} ^ K <

A2{p) and a ■ K C K for all a E A. Thomson's result generalizes and simplifies the

proof of Brown's invariant subspace theorem [1].

For a E A denote multiplication by a acting on A2{p) by MQ. Then Ma is a

subnormal operator and Ma commutes with Mj, for any b E A (see Conway [2]

for terminology). Thus a test question for the existence of nontrivial hyperinvari-

ant subspaces for subnormal operators is the existence of a nontrivial ^-invariant

subspace of A2{p), when A is nontrivial.

We prove

THEOREM A. If A is a nontrivial subalgebra of L°°{p) containing constants,

then A2(p) contains a nontrivial A-invariant subspace.

The proof of Theorem A requires several lemmas. The purpose of the first lemma

is to replace the original invariant subspace problem with a presumably easier one.

LEMMA 1. If there exists w E L2{p) with w > 1, such that A2{wdp) has a non-

trivial A-invariant subspace M with M D L°°{p) ^ {0}, then A2(p) has a nontrivial

A - invariant subspace.
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Note that for Lemma 1 to be useful, some restriction on the ^-invariant subspace

of A2{wdp) must be imposed. It is not hard to show that a sufficient condition that

At n L°°{p) t¿ {0} is that the ^-invariant subspace At have finite codimension in

£2{wdp).

PROOF OF LEMMA 1. First, we see that 1 <£ At, else A ■ 1 C M and A2{wdp) =
At, contradicting the nontriviality of At.

Let y be the projection of 1 onto Atx and let m G At D L°°{p) with m ^ 0.

Since w > 1, A2{wdp) C A2{p) — A2{p), so m, y E A2{p). The hypotheses show

that for a E A, my a E A2{p). Define

K = sp{mya:aEA}-L*M.

Then {0} < K < A2(p) and clearly K is ^-invariant. Now (y/y)w E L2{p), where

y/y is defined to be 0, wherever y vanishes.

Computing, we see that

{mya, {y/fjw)^ = (ma, y)wda = 0,

since m G At and At is ¿i-invariant. But

(y,{y/y)™)p = (i,y)wdU = \\y\\idU ¿ °.

so K < A2(p).    D

It remains to show how to find such a useful w. The next two lemmas are similar

to well-known results about Cauchy transforms (see Garnett [3]).

LEMMA 2.   LetaE L°°(p) and <p E L1(p). Then for each 0 < e < 2,

\4>{z)\/\\ - a{z)\2-£ E L1{p)     for m-a.e. A G C.

(m denotes area Lebesgue measure.)

PROOF. Assume that the essential range of a and the support of p, K, are

contained in the open disc about 0 of radius R, Dr{0). By Fubini we need only

show that for 0 < e < 2 fixed,

/ \4>{z)\ I
JK JDIdr(0) l^-<*(z)|2-£

is finite.

But for A in Dr(0) and /i-a.e. z, \a{z) — A| < 272, so

dm(X) dp(z)

2R

< oo.    Dh < 2tt / \4>(z)\ [     -^rdr < 2tt^^ / \cf>\du
Jk Jo     r2~e £     JK

LEMMA 3.   LetaE L°°(p) and <j> E L2(p). Suppose that

<h{z)L dp(z) = 0   for m-a.e. A in C.
fKX- a(z)

Then

qb{z) [AR2 - \a(z) - w\2) dp(z) = 0L'K
for allwEDR(0).
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PROOF.  Choosing R as in Lemma 2 and applying the proof of Lemma 2 with

e = 1, we have for any fixed w E Dr{0)

0 = / f (A - w) / r^r *»(*)) dm(A)
JD2R(w)   \ JK A - Q(Z) /32B(tu)

A — w;

JK \JD2R
, A - a(z)(™) v '

dm(A) dp(z).

By Cauchy's theorem the bracketed integral equals

r2R

27T /      lndex(a{z),dDr(w))rdr
Jo

ç2R
= 2n rdr = ir(4R2 - \a(z) - w\2),

J \ct(z) — w\

completing the proof.    D

Recall that A is a subalgebra of L°° (//) containing the constants.

LEMMA 4.   Let a G L°°(p) and <h E L2(p). Suppose that

mL dp{z) = 0
Ik A - a(z)

for m-a.e. A in D.   Then <pLa and (¡)Lcx.   Thus, if qb satisfies the condition above

for each a in A, then 4>±A and ¿>±A*, A* = {a: a E A}.

PROOF. Varying R in Lemma 3, we see that

0= /  <¡>{z)dp(z).
Jk

Thus for w E Dr{0), Lemma 3 gives

0 = / (¡>(z) (AR2 - \a(z)\2 + 2Re(wâJz)) - \w\2) dp(z)

= - f <t>(z)\a(z)\2dp(z) + 2 f <t>{z)Re(waJzj)dp(z).
Jk Jk

Varying w we get

0= /   4>(z)Re(a{z))dp(z)    and     0 = /" (¡){z)lm(a{z))dp{z).    D
Jk Jk

We thank the reviewer for his suggestions on improving Lemma 4.

COROLLARY 1.   Suppose that for each <j> E L2(p) Q A2(p) and every a G A, we
have

dp(z) = 0   for m-a.e. A G C.L}K A - a(z)

Then A acting on A2(p) is an abelian von Neumann algebra.

PROOF.  Just note that using Lemma 4, the assumptions we are making force

A2(p) to contain A*. Hence A = A2(p)nL°°{p) D A* and A is selfadjoint on A2(p).
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This follows since for a G A, M* is the projection onto A2(p) of multiplication by

a. Because A is w*-closed in L°°(p) it is easy to see that A is weak operator closed,

considered first as multiplication operators on L2 (p) and second when restricted to

the ¿î-reducing subspace of L2(p),A2{p).

COROLLARY 2. 7/A is nontrivial and the hypotheses of Corollary 1 are in force,

then A2(p) has a nontrivial A-invariant subspace containing a bounded element; in

fact an idempotent.

PROOF. Using Corollary 1 we know that A is an abelian von Neumann algebra.

But by standard results (Conway [2, p. 88]), A is generated by a single selfadjoint

element a in A. Since A is nontrivial, any nontrivial spectral projection of a

generates the desired ^-invariant subspace of A2(p).    D

We are now ready to prove Theorem A.

PROOF. By Lemma 1 we need to find a w > 1 in L2{p), so that A2{wdp)

contains a nontrivial ¿í-invariant subspace, At, with At C\ L°°(p) ^ {0}. We have

two cases.

If Corollary 1 applies, then take w = 1 and Corollary 2 gives the desired A-

invariant subspace (which is in fact reducing) with nontrivial idempotent as the

bounded element.

Else there is a <¡> E L2(p) © A2(p), an a E A, and a A G C for which

<» ¿(lÄif*<»
and

(2) f j^-dp^O.
Jk A-a

(Note that since <f> _L 1, using (2) we see that a cannot be a constant.)

Let

Then w > 1 and by (1) w E L2(p). Define a linear functional on A by

Lib) = [ b-^—dp   for 6 G A.
Jk  A-a

Then by Cauchy-Schwarz and (1)

|L(6)| <^|6|(l +

<  ||b||2,rud^

so L defines a bounded linear functional on A2{wdp). This functional is represented

by a unique k\ in A2{wdp). Since 7(1) / 0 by (2), k\ is not 0.

Let
M = {(X - a)b: b E A}-L2{wd^.
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Then {0} < At < A2(wdp) and At is yî-invariant. Moreover, for 6 G A the choice of

<f> gives

((A - a)b, kx)wdu = L((X - q)6) = / (A - a)b^— dp = 0.
Jk A-a

Thus At <A2(wdp) and A-aG MnL°°(p).   D

In conclusion we emphasize the strategy of first replacing the original invariant

subspace problem by an invariant subspace problem on P°°(p) (Brown [1]), in

P3(p) (Thomson [4]), or in P2(wdp) (for appropriate w) as above. Of course much

work may still remain to solve the original problem (!), but it would seem that an

abstract operator theoretic technique is lurking in this preliminary step. To be a

little more specific we believe that there is an abstract operator theoretic lemma

which generalizes Lemma 1.
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