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CONTINUITY OF DERIVATIONS
ON SOME SEMIPRIME BANACH ALGEBRA

RAMESH V. GARIMELLA

ABSTRACT. If every prime ideal is closed in a commutative semiprime Banach

algebra with unit, then every derivation on it is continuous. Also if derivations

are continuous on integral domains, then they are continuous on semiprime

Banach algebras.

1. Introduction. In [9] Singer and Wermer proved that the range of a con-

tinuous derivation on a commutative Banach algebra is contained in the Jacobson

radical. They conjectured that the assumption of continuity is unnecessary. In [7]

Johnson proved that if A is a semisimple Banach algebra, then every derivation on

A is continuous and hence by the Singer-Wermer theorem it is zero.

In this note in §3, we prove that if A is a semiprime Banach algebra in which

every prime ideal is closed, then every derivation on A is continuous. We also prove

that if derivations are continuous on integral domains, then they are continuous on

semiprime Banach algebras. In §2, we prove that if fln>i Pn m contained in every

closed prime ideal, then the separating ideal of every derivation is nilpotent, where

R is the Jacobson radical of A. This improves a result of [8]. We also note that if

the Jacobson radical R of A is an integral domain and if there is a nonzero element

a G R such that Hn>i a"^ = {0}, then every derivation on A is continuous, which

generalizes a result of [8].

Throughout the following we suppose A is a commutative Banach algebra with

unit. R and N will denote, respectively, the Jacobson and nil radicals of A. N is

also called the prime radical of A and it consists of all the nilpotent elements of A.

For any derivation D on A, let

S(D) = {x G A: there are x„ —> 0 with Dxn —► X}

be the separating ideal of D. Let

A(S(D)) = {x G A: xS(D) = 0}

be the annihilator ideal of S(D). By the closed graph theorem one can see that D

is continuous if and only if S(D) — {0}.

2. Even though the following is implicit in [8], we state and prove it as a separate

lemma.

LEMMA 2.1.   S(D) is nilpotent if and only if S(D) C\ R is nilpotent.

PROOF. One half of the proof is obvious. For the other half suppose that

S(D)f]R is nilpotent. Then by Theorem (1) of [8], it follows that D(A) is contained

in R. Since R is a closed ideal, it follows that S(D) Ç D(A) C R.    Q.E.D.
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REMARK 2.1. If A has no nonmaximal closed prime ideals, then by Theorem 2.7

of [3], every separating ideal of a derivation is a nilpotent ideal. Thus if necessary

we can always assume that A has nonmaximal closed prime ideals.

THEOREM 2.1. Iff]n>1 Rn is contained in every closed prime ideal of A, then

S(D) is a nilpotent ideal.

PROOF. By Remark 2.1, we may assume that A has nonmaximal closed prime

ideals. By Lemma 2.1, it is enough to prove that S(D) n R is nilpotent. Let

x 6 S(D) D R. Since S(D) is a separating ideal, there is a positive integer m such

that xmS(D) = xnS(D) for all n > m. It follows from the Mittag-Leffler Theorem

[1, Theorem 3.3] and the hypothesis that

xmS(D) = f] xnS(D) = p| xnS{D) ç f]RnÇP
n>l n>l n>l

for every closed prime ideal P. Thus xm+1 belongs to every closed prime ideal P

and hence so does x. Thus S(D)f\R is contained in S(D) f] P for every closed prime

ideal P. But as noted in the proof of [3, Corollary 2.4], S(D) niV = flí^í-D) n P),
where the intersection runs over all the minimal prime ideals P (which are closed)

such that S(D) <£ P. Hence by the above argument it follows that S(D) n N =

S(D) n R. Thus S(D) n R is a closed nil ideal. Therefore S(D) n R is a nilpotent

ideal (cf. [5]).    Q.E.D.
The following result is Lemma 3 of [8].

COROLLARY 2.1.   Iff]n>i Rn = {°}> then S(D) îs nilpotent.

REMARK 2.2. Let D be a discontinuous derivation on A. Then by Theorem 2.7

of [1], it follows that there is an element a G A such that Do = aD is a discontinuous

derivation on A with the following property:

í (i)     A(S(Dr¡)) is a closed prime ideal of A.

I (ii)    For every x G A, either x G A(S(D0)) or xS(D0) = S(D0).

THEOREM 2.2. If the Jacobson radical R is an integral domain and if there is

an element 0 / a G R such that f\n>1 anR = {0}, then every derivation on A is

continuous.

PROOF. Suppose the theorem is false. Then by Remark 2.2 we may assume

that there is a discontinuous derivation D satisfying (*), so that A(S(D)) is a

prime ideal. First we prove that S(D) Ç R. Since D is discontinuous by Lemma 2.1,

S(D)nR ¿ {0}. Let 0 £ s G S(D)nR. Since R is an integral domain, s $ A(S(D)).

Therefore by (*), s(S(D)) = S(D). Since R is a closed ideal, it follows that

S(D) C R. Note that S(D) is not contained in A{S(D)) and hence R £ A(S(D)).

Now consider 0 ^ a in R such that fj„>i anR = {0}. Note that a <£ A(S(D)). (For

if o G A(S(D)), then aS(D) = {0}. Since R is an integral domain it follows that

a = 0.) Therefore by (*), a~SjD) = S(D). Let x G S(D)\A(S(D)). Since A(S{D))
is a prime ideal, ax £ A(S(D)). Therefore again by (*) we get x G (axS(D)).

Hence x G axR. Therefore by the equivalence conditions of class (iv) [4, p. 59], it

follows that p|n>i anP 7^ {0} which is a contradiction.    Q.E.D.

The following result was proved in [8].

COROLLARY 2.2.   7/nn>i J^n = W and & ÎS an íníe?ra' domain, then every

derivation on A is continuous.
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REMARK 2.3. Using the Mittag-Leffler Theorem [1, Theorem 3.3] and the same

argument as that of Theorem 2.2, we can prove the following

THEOREM 2.3. Suppose A is a commutative Banach algebra with unit which

is also an integral domain. Further assume there is a nonzero closed ideal I such

that Dn>i P1 — {0}-  Then every derivation on A is continuous.

3. Following Khosravi [8], for any ideal I of A, we define

K(I) = {xGl: Dnx G I for all n > 1},

where D is any derivation on A.

The following lemma can be proved very easily and so we shall omit the proof.

LEMMA 3.1. For any ideal I, K(I) is an ideal. Further K(I) is a prime ideal

if I is a prime ideal.

REMARK 3.1. Let A be a commutative semiprime Banach algebra with unit.

Let D : A —> A be a discontinuous derivation on A. Since A is semiprime, as noted

in the proof of Corollary 2.4 of [3], we get that fl^O0) D P) = {0}, where the
instersection runs over all the minimal prime ideals P such that S(D) <t P. Now

again by Theorem 2.7 of [1], there exists an element a G A such that Dç, = aD is a

discontinuous derivation on A satisfying (*) of Remark 2.2. Since A is a semiprime

Banach algebra, S(Dr¡) ^ A(S(Dc¡)). Let P be a minimal prime ideal such that

S(D) £ P. Since S{D0) ■ A(S(D0)) = {0}, we get that either S(D0) Ç P or
A(S{D0)) Ç P. If S(D0) is contained in every such P, then since S(D0) C S(D),

we get that S(Dq) = {0}, which is false. Therefore there exists a minimal prime

ideal P such that S(D0) $£ P. Therefore A(S(D0) C P. Since A(S(DQ)) is a prime

ideal, we get P = A(S(Dç,)). Thus A(S(D0)) is a minimal prime ideal. Thus if

necessary we can assume that there exists a discontinuous derivation D such that

A(S(D)) is a minimal prime ideal and for every x G A either x G A(S(D)) or

x~SjD) = S{D).

THEOREM 3.1.   The following conditions are equivalent.

(i) Every derivation on a commutative Banach algebra with unit which is an

integral domain, is continuous.

(ii) Every derivation on a commutative semiprime Banach algebra with unit is

continuous.

PROOF. Obviously (ii) implies (i). So assume (i). Suppose (ii) is false. Then by

Remark 3.1, there exists a semiprime Banach algebra A with unit, and a discon-

tinue derivation D satisfying (*) of Remark 2.2 and further A(S(D)) is a minimal

prime ideal. Now by Lemma 3.1, K(A(S(D))) is a prime ideal of A contained

in A(S(D)). Since A(S(D)) is a minimal prime ideal we get that A(S(D)) =

K(A{S{D))). Therefore A{S(D)) is invariant under D. "Hence D: A/A(S(D)) -+

A/A(S{D)) defined by D(x + A(S{D))) = Dx + A{S(D)) is a derivation. Since

A/A(S(D)) is an integral domain, by hypothesis, we get that D is continuous.

Hence S(D) — {0}. This implies that S(D) C A(S(D)). Since A is a semiprime

Banach algebra we get that S(D) = {0} which is a contradiction. This completes

the proof of the theorem.

THEOREM 3.2. Let A be a semiprime commutative Banach algebra with unit

in which every prime ideal is closed.  Then every derivation on A is continuous.
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PROOF. Suppose the theorem is false. We may assume that there is a discon-

tinuous derivation D satisfying the conditions mentioned in Remark 3.1.

Thus A(S(D)) is a minimal prime ideal and hence K(A{S(D))) = A(S{D)). In

particular A(S(D)) is invariant under D and we may lift D to the integral domain

A/A(S(D)). Note that the prime ideals of A/A(S(D)) are all closed. If the lifted
derivation is discontinuous we may again assume that (*) holds. Note that since

we may now assume that A is an integral domain, A(S(D)) = {0}. Hence, if / is

a closed nonzero ideal and 0 / i e /, then xS(D) = S(D) Ç /. Thus S(D) is

contained in every nonzero prime ideal. Also S(D) Ç R.

If J is a nonzero ideal and if S(x): = {x,x2,...} where x G S(D), then if

I n S(x) = 0, we can find a prime ideal P D I with S(x) D P = 0. But P is a

closed ideal and this contradicts the previous observation. Hence S(x)C\I ^0 for

every nonzero ideal I of A.

Now since xS(D) = S(D) for every x ^ 0, the argument of Theorem 8.1 of [4]

applies and produces the existence of two elements b, c G S(D) such that bn £ cA

and cn £ bA, n = 1,2,.... This means S(b) D cA = 0 and S{c) D bA = 0. This

contradicts the previous paragraph and proves that the lifted derivation must be

continuous. Hence for the original derivation D, we obtain S(D) C A(S(D)), or

S(D)2 = {0}. But A is semiprime, so S(D) = {0}. This is a contradiction.    Q.E.D.

FINAL REMARK. Banach algebras satisfying the hypothesis of Theorem 3.3

occur in the work of Sandy Grabiner [6] (in particular refer to Theorem 3.8, p. 176

and Theorem 3.15, p. 179). This was pointed out to me by the referee and also by

Professor K. B. Laursen. I am very grateful to them. Finally, it is interesting to

find some more examples of Banach algebras in which prime ideals are closed.
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