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CONCERNING POLYNOMIALS ON THE UNIT INTERVAL

Q. M. TARIQ

ABSTRACT. Let Pn be the normed linear space of all polynomials p of degree

< n such that p(l) = 0 and ||p|| = (f     |p(x)|2 dx)1/2.   We determine sharp

upper bounds for |on|/||p|| and |an_i|/||p|| as p(x) := X^n=oa"x" va"es m

Pn-

According to a classical result of Chebyshev if pn(x) := Y12=o a^x^ is a polyno-

mial of degree n, then

(1) |on|<2n-1   max >„(x)|.
—i<i<i

It is also known [1] that

™ i/ 1-3-5 —(2n-i) (2n + l\l/2 ( rl .    '    l2 , \1/2
(2) |on|<--f-  \2~)      y\Pn(x)\dx)     ■

In (1) equality holds for the Chebyshev polynomial Tn(x) := cos n(arccos x) whereas

in (2) it holds for the Legendre polynomial

._ [^]     (-ir(2n-2,)!
r»W- ¿¿2"i/!(n-v)\{n-2t/)!

It was shown by Schur [2, Theorem III*] that if pn vanishes at one of the end-

points — 1 or 1, then (1) can be replaced by

(3) K\ < 2"-1 (co8^)2n_max<i|Pn(x)|.

Here we obtain the corresponding improvement in (2). In fact, we prove

THEOREM.   If pn(x) := X)"=o avx" îs a polynomial of degree n such that pn(l)

= 0, then

,    i^     »      »    f2n + l\1/2 { f1 .     . ...     \1/2

The inequality is sharp and equality holds for

1 n_1

pn(x) := Pn(x) - -j 2j(2i/+ l)Pv(«),
i/=0
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where P„ is the Legendre polynomial of degree u with the normalization P,(l) = 1.

Besides,

t*\      i        ,^(n2 + 2)1/2      (2n-2)!       /2n - 1\1/2 / f1 .    , ,|2j\1/2

which is again sharp, as the following example shows:

pn{x) := Srlp"(:r) - p-i(x)+¿2 Ê(2v+i)páx)-

In the absence of the hypothesis p„(l) = 0 the factor (n3+2)1/'3/(n+l) appearing

on the right-hand side of (5) is to be dropped [1, (3)].

Proof of the theorem. Let

(6)

Then

/    tpv{x)(pß(x)dx= \
J-i 11     if P = v,

and the polynomial pn(x) can be expressed uniquely in the form

n

(7) pn(x) = ^au<pv{x),

where

¿k,|2= f \Pn(x)\2dx.
l/=0 J-1

From (7) in conjunction with (6) it follows that

(8)
{2n + l\1/2   (2n)! (2n-\\1/2      (2n-2)!

an~V     2     J      2"(n!)2an'        a"-i-^     2     J      2"-i((n-l)!)2a"-1-

Now we wish to prove that if 7M > *yv > 0 for v = 0,1,..., \i — 1, ft + 1,..., n

then under the hypothesis of the theorem
n n

(9) E^iQ-i2^(^-^)EiQ-i2'
i/=0 i/=0

where f is the unique root of the equation

in (0,T := mino<^<n^5éM(^ - lu))-

We write the left-hand side of (9) as
n n n

Y^lA^A2 = 7^X1 Ia"!2-     12    {in - lv)\<*A2
v=0 w=0 u=0;v^íp.

n n n

= lnJ2\a»\'2 ~     H    (in - 1* - l)\a»\2 - 1    Yl    I0"'2'
i/=0 i/=0;t/5¿/^ u=0;v^n
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where, for the moment, 7 is a constant in (0, T). From the hypothesis p„(l) = 0

and Schwarz' inequality we obtain

t      (^+lV/2
n..,-A,, V

2-; a- í t (^r*)'
-j    £    ̂ -1v-i)1/2\«a(2^\'\i»-I»'!)'A

[_i/=0;i/#/i ^ ' J

2i/ + l
(>-^-t)   *■

so that

-   X   (tm-^-tOKI

-1

2     I"mI   )     Z-,    -E   —0—(>-t«'-'y) ]

Now if 7 happens to be the root of the equation (10) lying in (0, Y), then

-1

i/=0;i^/i
2/x + l

and we get

n

E>la
n n

*|2 < 7„
u=0

Y2\aß\2 -7|aMl2 -1    X    lQ"l2 = h»i-T)EW
i/=0 i/=0

which proves (9).

If 7„ =s 1 and 7„ = 0 for 1/ = 0,1,..., n — 1, then 7 turns out to be equal to

(2n + l)/(n + l)2 and (9) reduces to

(H)

1/2

v=0

Similarly, choosing 7„_i = 1 and 7„ = 0 iorv = 0,1,..., n — 2, n, we obtain

W> K-'i^    few')    •
<i>=0

Combining (11), (12) with (8) we readily obtain (4), (5) respectively.

Both the inequalities (4), (5) are sharp and in each case the extremal polynomials

are easily identified.
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