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A GENERALIZATION OF
LYAPOUNOV'S CONVEXITY THEOREM

TO MEASURES WITH ATOMS

JOHN ELTON AND THEODORE P. HILL

ABSTRACT. The distance from the convex hull of the range of an n-dimen-

sional vector-valued measure to the range of that measure is no more than

an/2, where a is the largest (one-dimensional) mass of the atoms of the mea-

sure. The case a = 0 yields Lyapounov's Convexity Theorem; applications

are given to the bisection problem and to the bang-bang principle of optimal

control theory.

1. Introduction. The celebrated Convexity Theorem of Lyapounov [8] states

that the range of a nonatomic finite-dimensional vector-valued measure is compact

and convex (where throughout this paper "measure" means "countably-additive

nonnegative finite measure"). The range may not be convex if the measure has

atoms (see for example, Figure 1) but, as is the main purpose of this paper to

prove (Theorem 1.2), a fairly sharp bound can be given on how far from convex

the range can be, as a function of the mass of the largest atom. Intuitively, if the

atoms all have very small mass, the range is very close to being convex.

Throughout this paper, (X, 7) will denote a measurable space; Mn is the set of

n-dimensional measures on (X, J) (i.e., Mn = {(/¿i,.. .,//„): m is a measure on

(X, 7) for all i < n}; and R(pt) is the range of p = (/zi,.. .,//„) G Mn. The

first theorem, a result of Lyapounov [8], states that the range of every vector

measure (nonatomic or not) is always compact; this conclusion is classically proved

in conjunction with the Convexity Theorem (see for example Diestel and Uhl [3],

Halmos [4], Lindenstrauss [7], or Lyapounov [8]). However, only the conclusion in

the case n = 1 will be used in the proof of Theorem 1.2, and this case is fairly easy

to establish directly without convexity (cf. Halmos [5, Problem 4, p. 174]).

THEOREM 1.1  (LYAPOUNOV [8]).   If~¡tGMn, then RQ) is compact.

To state the next theorem, the main result of this paper, some additional notation

and definitions are needed: co(A) is the convex hull of A C Rn; ||x|| is the Euclidean

norm of x G Rn; d(x, y) — \\x — y\\ is the distance between x and y; and d(x, A) =

inf {d(x, y) : y G A} is the distance from x to the set A.

DEFINITION. For A C Rn, D(A) = s\ip{d(x,A): x G co(A)}. (For a set A,

D(A) represents the maximum "dent size" of A; see Figure 1.)
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FIGURE 1

The set A is the range of the vector Borel measure (p\, p,2)

on [0,1] defined by: /z({0}) = p2({0}) = f; pi = A and

¿i2 = |A on (0, |]; and /¿i — \\, p2 = \ov. (\, 1] (where

A = Lebesgue measure).

DEFINITION. Pn(a) = {p, G Mn: Pi{A) < a for all i < n and all /¿¿-atoms A}.
(So Pn(a) is the collection of n-dimensional vector measures none of whose coordi-

nate measures have atoms of mass greater than a.)

THEOREM 1.2.   If ft G Pn{a), then D(R{~ß)) < an/2.

THEOREM 1.3 (LYAPOUNOV [8]). Ifni,...,pn are nonatomic, then R(p) is

convex.

The proof of Theorem 1.2 will be given in §3; Theorem 1.3 follows from Theo-

rems 1.1 and 1.2 and the following easy lemma.

LEMMA 1.4.  A closed set B c R" is convex if and only if D(B) = 0.

2. Purely atomic measures. The purpose of this section is to prove some

preliminary results corresponding to the case where each pi is purely atomic with

only a finite number of atoms. Throughout this section, V is a finite set of (not

necessarily distinct) points in R" = {(rj,..., rn) : r¿ G R, r¿ > 0 for all i < n}.

DEFINITION 2.1.

E00 {/] 6iXi: Si
xiëv

Oor 1 C(V) = \ J^tiXi-.tielMn.
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FIGURE 2

(So £(V) is a finite set of points in R" and C(V) contains £(V); see Figure 2.

C(V) is a zonotope [1], or zonohedron [2], and most of the results of this section

may be rephrased using that terminology.)

LEMMA 2.2.   co(EOO) = C(V).

PROOF. Routine.    G

The next lemma states that C(V) can be expressed as the union of translates of

subsets of the form C(V) (see Figure 2) where \V\ < n. Its proof is similar to an

argument of Carathéodory (see [11, p. 35]).

LEMMA 2.3.  C(V) = \J{E(V\V) + C{V): V CV,\V\ < n}.

PROOF. Clearly C{V) D U{s(^\*0 + C{V): V C V,\V\ < n}, so fix x =
YZLi Uxi G C{V), where {xi}^ C V and {ij C [0,1]. If m < n, the conclusion

is trivial, so suppose m > n. It will be shown that there exist {¿¿}™ x C [0,1] with

tj = 0 or 1 for some j < n so that x = Y^iLi ¿»x»> an(^ ^e conclusion will then

follow by induction.

Assume further that 0 < U < 1 for all i < m (for otherwise taking t{ = U

suffices). Since m> n, there exist constants {a¿}™ 1 not all zero, so YlT=i °»x« = 0-

Let

b = min{í¿/|a¿|,(l - t»)/|a»|: i — l,...,m, a¿ ^ 0},

and observe that 0 < b < oo.

CASE 1.6 = tk/\ak\ for some 1 < k < m. Let

ti = U - (bsgaak)ai,        i=l,...,m.

Note that tk = 0, £™ i *<*< = £™ i ***»> and if a¿ # 0,

ti . ~ (1 - ti).
U >U — -.—r|a¿| = 0   and    U <U-\-¡—¡—¡a«| = 1,

|at| |a¿|

so ti G [0,1] for each i (since if a¿ = 0, U = í¿).

CASE 2.6= (1 -ífc)/|ofc| for some 1 < k < m. Let

U = U + (6sgnafc)ai,        i = l,...,m.

Note tk — 1, Y^i^i ̂ ixi — Y^iLi Uxi, and check as before that {í¿} C [0,1].    D
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LEMMA 2.4.   // V C [0,1]™ and \V\ = n, then the distance from any point in

the parallelepiped C(V) to the nearest vertex is < n/2.

PROOF. First it will be shown that, for all i,y6R" and all t G [0,1],

(1) min{||x + (1 - t)y\\2, \\x - ty\\2} < \\x\\2 + \\y\\2/A.

To see (1), first consider the case 2(x,y) > (t2 - (1 - £)2)||y||2. Then

\\x-ty\\2 = \\x\\2 + t2\\y\\2-2t(x,y)

<\\x\\2 + t2\\y\\2-t(t2-(l-t)2)\\y\\2

= ||x||2 + r(l-i)IM|2<||x||2 + ||2y||2/4.

The case where 2{x,y) < (t2 — (1 — i)2)||y||2 is similar, yielding ||x + (1 - f)y||2 <

INI2 + IMI2/4.
Next, let V — {x\,..., xn} and fix x = £)"=1 ^¿x¿ e C(V). Applying (1) n times

implies the existence of {<5¿}™=1 G {0,1} satisfying

2_,¿¿z¿
i=l

^(6i - ti)x,

¿=i
< n • n/A — n2/4,

which completes the proof.    O

PROPOSITION 2.5.   IfV C [0,a]n, then Z?(S(V)) < an/2.

PROOF. By Lemma 2.2 and the definition of D, D(T,(V)) = sup{d(x, Z(V)) : x G

C(V)}, which together with Lemma 2.3 implies D(Y,(V)) < max.{D(Z(V)): V C

V, \V\ < n}. Then Lemma 2.4 (and rescaling) implies D(T,(V)) < an/2 for all such

V.    D

The next example shows that the bound in Lemma 2.4 (and hence in Propo-

sition 2.5 and Theorem 1.2) is of the correct order in n; in fact the best possible

bound (which is not known to the authors) is at least n/8 for general n and at least

n/4 if n is a power of 2.

EXAMPLE 2.6. Fix n, let m = 2k < n < 2k+1, and let {w*}™^1 be the m - 1

mean-zero Walsh functions on m points (see [12]).  Then Wi 6 {—l,l}m, Wi±Wj

for i 7^ j, and iu¿_L 1 for each i, where 1 = (1,1,..., 1). For example, when n — A

(so k — 2 and m — A)

Wl = (1,1,-1,-1),    102 = (1,-1,1,-1),    and     w3 = (1,-1,-1,1).

Let Xi = (wi + T)/2 for i = 1,..., m - 1, so x¿ G {0, l}m C [0, l]m, and

(x¿, Xj) — (wi + 1, Wj + 1 )/4

= ((wi, wj) + (wi, T) + (T, wj) + (T, T»/4
_ f m/A   if i ^ j,

\ m/2    if i = j'.

Let V = {xi,..., xm_i}; it will now be shown that the distance from the center

of C(V) to the nearest vertex is at least m/A.
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Let 6{ = 0 or 1 for i = 1,..., m, and let e% = 1 — 2¿¿, so e* — ±1 for each i. Then

m-l 2r 77i—1 m—1

. ¿=i ¿=i i=l

1 /m_1

4  5E w^w2 + J2Y^£i£o^'xj)
y i=i ijtj

1 / m(m — 1)     m v-^ v—*

m —1

IE eA _ * = E E £i£j + (m - 2)>
j=i    / »w

so X! Siyij £¿£j > -(m - 2). Thus

|2m — \

/ j £%Xi

¿=1

Mn-1 _   /o  v->m—1

>
1 /m(m-l)      (m(m-2)) /m\2

so d(ESÎ «*A E£ï to) > "»/4.
Since m <n, one may consider x¿ G [0, l]n for each i, and since 2m = 2fc+1 > n,

the best possible upper bound in Lemma 2.4 is greater than n/8.

3. Proof of Theorem 1.2.

LEMMA 3.1. For each p and each e > 0, there exists a measurable partition

{Bi}iLi of X satisfying

(2) for each B G 7, 3J C {1,. ..,N} 3   £(£) - ji (U¿ej5i)| <£

PROOF. Since R(p) is bounded, there is an £-net {xi,... ,xm} of R(p); that

is, {xi,... ,xm} C R(p) and for each x G R(p) there is ani<m with ||x — x¿|| <

e. Let {Ai}7^! G 7 satisfy p(Ai) = x¿, i = l,...,m, and let {B¿}¿1, e J

be disjoint with o{B\,... ,Bn) = a(A\,... ,Am). It is easily seen that {Bi}fL1

satisfies (2).    D

LEMMA 3.2. If p G Pn(oî), then for each B G 7, 3 a measurable partition

{Bi}k=1 of B such that Pj(Bi) < a for each j <n and i < k.

PROOF. Assume pi(B) > a. Let

A = mî{m(E) : E CB, EG 7, and pi(E) > a/2}.

By Theorem 1.1, A is attained, that is, there exists E\ G 7 with E\ C B and

Pi(Ei) = A > a/2. Next it will be shown that

(3) A < a.

If A > a, then Ei is not an atom of pi (since p\ G Pi(a)), so there is a

measurable subset C of E\ with 0 < pi(C) < pi(Ei). But then either pi(C) > a/2
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or pi(Ei\C) > a/2 since pi(E\) > a. This contradicts the definition of A, since

Pi{C) < A and also Hi(Ei\C) < A.
Repeat this argument for B\Ei in place of B, etc., and then for p2,p3,... ,pn

to arrive at the desired partition {Bi}k=1.    D

REMARK. Notice Theorem 1.1 is used here only in the case n — 1.

PROOF OF THEOREM 1.2. Fix 7* G #»(<*). If ~p is purely atomic with only

a finite number of atoms, then R(p) = £>{V), where V = {p(A): A is an atom

of p} C [0,a]n, and the conclusion follows by Proposition 2.5. For general p,

Lemmas 3.1 and 3.2 will be used to approximate this finite-atom case.

First assume a > 0. It must be shown that

(4) d(x, R(p)) < an/2   for all x G co(R(p)).

Fix £ > 0. By Lemma 3.1 and repeated application of Lemma 3.2, there is a

measurable partition {Bi}fLt of X satisfying both (2) and Pj(Bi) < a for all j <n

and i < N. Let p0 be the restriction of p to a(B1,... ,Bn); then p0 is purely

atomic with only a finite number of atoms, and po G Pn(o¡), so by Proposition 2.5

N V

(5) D(R(p0)) \Jp(Pi) <an

Fix x G co(R(p)); then x = YliLi Uxi for some {x¿} C R{p) and some {í¿} > 0,

YUiL\ U = 1. By (2) there exist J\,..., Jm C {1,..., N} satisfying

(6) < e     for all i = 1,...,m,

so letting y = J2T=i *»M \UjeJi Bi) e co(Ä(/*o)),

(7) F-»II E*»IXi~¡"* I U ßj
¿=i     V \jeJi

<^2Ue =
i=l

Next observe that

(8)
d(x,R(p)) < d(x,y) + d(y,R(p))

<e + d(y, R(po)) <£ + an/2,

where the second inequality in (8) follows from (7) and the fact that R(po) C R(p),

and the third inequality from (5) since y G co(R(po))- Since e was arbitrary, this

completes the proof of (4); the case a = 0 follows easily by continuity.    □

4. Applications. Lyapounov's Convexity Theorem has been applied to a va-

riety of problems in such diverse areas as Banach space theory, optimal stopping

theory, control theory, and statistical decision theory (see Diestel and Uhl [3]); the

purpose of this section is to mention two similar applications of Theorem 1.2.

BISECTION PROBLEM. If pi,..., pn are nonatomic probability measures on the

same measurable space (X, 7), then there is always a measurable subset A of X

with Pi(A) = 1/2 for all i (this is a special case of a theorem of Neyman [9]). The

following theorem generalizes this result.
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THEOREM 4.1. If p\,... ,pn are probability measures and pi G ?\ (a) for all i,

then there is a measurable subset A of X satisfying

\pi(A) — \\< an/2   for all i = 1,2,..., n.

PROOF. Since (0,0,..., 0) and (1,1,..., 1) G R(p), (¿,¿,...,¿) G co{R(p)).
Apply Theorem 1.2.    D

BANG-BANG PRINCIPLE. Lyapounov's Convexity Theorem was used by

LaSalle [6] to establish a principle in control theory which says that if an admissible

steering function (in an absolutely continuous problem) can bring the system from

one state to another in time t, then there is a "bang-bang" steering function that

can do the same thing in the same time. A generalization of a particular form of

this principle is given by the next theorem, which essentially says that in a system

with point masses (or discontinuities or jumps in the process), given an arbitrary

steering function there is always a bang-bang steering function which will bring the

system within distance an of the state arrived at by the given steering. (In the

following theorem, the set M is viewed as the collection of all admissible steering

functions, and M° as the set of bang-bang steering functions—see LaSalle [6].)

THEOREM 4.2. Let p be a finite n-dimensional vector-valued Borel measure

on [0,1] with pi({t}) < a for all i < n and all t G [0,1]. Let M be the set of

all real-valued Borel measurable functions f on [0,1] satisfying \f(t)\ < 1 for all

t G [0,1], and let M° be the subset of M with \f(t)\ = 1 for all t G [0,1]. Define

K= | Ífdp: fGM

and

K°= í Í fdp: fGM0

Then K° is compact, co(K°) = K and D(K°) < an.

PROOF. By Theorems 1.1 and 1.2, R(p) is compact and D(R(p)) < an/2.

Letting fE{t) = 2IE(t) -1 for each subset E of [0,1], it is clear that K° = 2R(p) -

p([0,1]), so K° is compact and D(K°) < an.

It is clear that K and K° are unaffected if we consider (via the usual equivalence

classes of |/x|-a.e. equal functions) M and M° to be subsets of Loo(\p\), where \p\

is the total variation of p. By the Krein-Milman theorem M is the weak*-closure

of the convex hull of M°, and it follows easily that, for z — J fdp G K, z is in

the closure of co(Ä"°). But K° is compact, so (by [10, Theorem 3.25]) co(Ä"°) is

also compact, which implies z G co(K°). The opposite inclusion co(Ä"°) c K is

trivial.    D
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