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RADON'S PROBLEM FOR SOME SURFACES IN Rn

A. M. CORMACK

ABSTRACT. Radon's problem for a family of curves in R? has been gener-

alized to a family of (n — l)-dimensional surfaces in Rn. The problem is

posed as a set of integral equations. Solutions to these equations are given for

paraboloids and cardioids, and for these cases the null spaces and consistency

conditions have been found.

In Rn let x = (xi,x2,... ,xn) be a vector, let £,n be unit vectors, and let •

denote the scalar product. Let r = |x|, x = r£, and let p be a nonnegative real

number. For a fixed p, n the expression

(1) rQcos{acos-1(^-n)}=pa,        a > 0,

represents an (n — l)-dimensional surface which is symmetrical about n and for

which r = p when £ = n. Radon's problem is to determine a function f{x) given

the integrals of / over the surfaces (1). This is a generalization of Radon's problem

in which (1) represented a family of curves in fí2, which was discussed in [1, 2,

3]. In this two-dimensional problem a was assumed to be positive and the curves

were called a-curves, and for a negative we defined ß — — a and referred to these

curves as /3-curves. The a-curves and /3-curves are intimately related since an a-

curve becomes the corrsponding /3-curve under inversion in the unit circle: (r, 6) —»

(l/r,6). In what follows we shall first consider the surfaces (1) for a as stated,

namely, a > 0, and then in Appendix A list the important formulas for the ß-

surfaces with corresponding formula numbers since the treatments are so similar

that the arguments need not be repeated.

We first establish the integral equations for / when / is expanded in spherical

harmonics. For a = 1/2 these equations reduce to an extension of an integral

equation which was solved by Wimp [13], and which is discussed in Appendix B.

For a = 1/2, (1) represents a family of paraboloids. Their closest point to the

origin is x = pr\, and for p = 0 they degenerate to the straight line from the origin

to infinity in the direction —n. For a — -1/2 (ß = 1/2), (1) represents a family of

cardioids. Their greatest distance from the origin is x — pn and r —♦ 0 as £ —> — n.

The solution in this case depends on a further modification of Wimp's result, also

discussed in Appendix B.

In addition to the solutions of Radon's problem for these paraboloids and car-

dioids we give the null-spaces and consistency conditions for the corresponding

Radon transforms.
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We restrict ourselves to n > 3 because the results for n = 2 are known [1, 2,

3]. For many but perhaps not all of the results given below the formulas for n = 2

may be obtained by using the formulas

lim r(A)G,A(cos6>) = (2//)T,(cos0) = {2/1) cos W,

where Cf is a Gegenbauer polynomial and T¡ (x) is a Tchebycheff polynomial of the

first kind [9].

Let f(x) be a smooth, rapidly decreasing function of x andd let dx be an element

of volume of Rn. The integral of / over the surface (1) for a particular (p, n) will be

denoted by f(p, n) which will be called the Radon transform of /. The case a = 1

is the well-known case of integrals over planes discussed by Ludwig [8] and Deans

[5], who gives numerous other references.

Let <$(•) be the Dirac delta-function and let /i(£ • n) = cos{cos_1(£ • n)}. Then

(2) ara'16{rah{t:-v)-pa)

represents a delta-function of unit weight concentrated on the surface (1). The

factor ara_1 ensures that the expression has unit weight (Papoulis [10]), that is to

say the integral

(3) /(p, v) = J f{x)ar«-x8{rah{t: ■ v) ~ Pa) dx

is the integral over this surface in standard measure, the integral being taken over

all space.

Suppose that / is now expanded in spherical harmonics [6]:

(4) f(x) = J2flm(r)Slm(i)-
I

Then fim{r) — rlx (an even function of r), and the Radon transform of a typical

term in (4) may be denoted by fim{p,v) and written

(5) fim(p, n) = j /,m(r)5ím(0arQ-1¿(ra/i(£ • n) - pa) dx.

In Rn, dx = r71-1 dräut = r2X+1drdÜ^ where A = (n - 2)/2 and dfi€ is an

element of solid angle. Because n > 3, A > 1/2. Thus (5) can be written

(6) ¡Up, V) = a [   Slm(0 dQz f°° fim(r)r2X+a6(rah - pa) dr.
Jn( Jo

The r-integral is found to be p2A+1 fim(p/h1/a)/ah(-2X+a+1^a so (6) becomes

(7) fim(p,v)=P2X+1 [   fim(p/h^a)SlmU)h-i2X+a+1)/adni.
Jn(

Since h — /i(£-n), the integral is of the form fn G(£-7j)5{m(£) dQç which, according

to the Funk-Hecke theorem [6], is equal to ßiSim(r]) where

(8) ßl = c*\T) H G^c^(-1 - i2)A~1/2 dt>
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in which uin-i is the area of the unit sphere in i?"-1 and Cx(t) are the Gegenbauer

or ultraspherical polynomials [6, 0], Since ßi is a function of p only we may write

(9) fim(p,v) = fl(p)Sim(n),

where we hve suppressed the m in fi(p), and where

(10) Mp)=P2X+1^Í /«(rfe)
Cj|(1) Jcos(K/2a)       Vft1/a/

x [h{t)]-}2X+a+x)/aCt(t)(l - t2)x-x'2dt,

and the limits result from the specific form of h(t), namely, h(t) = cos{acos_11}.

On changing the integration variable from t to r = p/h1^, and on further putting

ra = s and pa = q and defining

(11) Ft(s) = (l/a)/^1/")^/«-!,       Ft(q) = ¿(<,1/a),

(10) becomes

(12) m - m f m'™°)c- (cœ {«"C08_1 ©})

The solution of this integral equation for F¡ (s) will solve Radon's problem for these

surfaces. Quinto [11] has remarked that (12) is invertible for functions of compact

support and that this implies a hole theorem (see below). No inversion formula

has been found except for the special cases a = 1/2, -1/2 (paraboloids, cardioids)

for which (12) can be reduced to a hypergeometric integral equation with a known

solution. We proceed to discuss this solution and to give some properties of the f¡.

For a = 1/2, (12) becomes

(13)    fit«) = ^ jT /,(.>"<? (»s (2COS-' (J) })

*^H-'(i)}H!)yva^

Let F{-, •; •; •) denote the ordinary hypergeometric function 2Fi. Then it is known

[9] that

<">        c'W=?iriárf(-u+2A;A+^)-

If 6 = cos"1(q/s), then use of the formulas for cos 20 and sin20 enables (13) to

be written

(15)
p (2q)2XT(l + 2\)2ujn-i  f°°       2   2X    (      .,„,.,,  1.      /<7\2\
fi(9) -        /¡r(2A)GA(l)-Jq   fl{3)s   F(-l,l + 2X,X + ^l-(7) )
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and the further substitutions s2 = t, q2 = r reduce (15) to

Klj~fl(t)txF(-l,l + 2\;\+±;l-Ç)(l-1ïy(16) Ij^-=Ki f°° ft(t)tx F (-1,1 +2\;X+I; l-l)(l-if  ^ dt,

where

22Ar(/ + 2AK_!
(17) Kt = l\T(2X)Cx(l)

For I = 0 the hypergeometric function is 1 and the resulting integral equation is

easily solved by differentiation if A = 1/2,3/2,..., or is reduced to Abel's equation

by differentiation when A = 1,2,3,_In what follows I > 0.

If we make the identification a = —I, b = I + 2A, and c = A + 1/2, then (16) is

precisely of the form of the modified Wimp equation (B3). The solution to (B3)

is (B7), which contains an integer m > c > 0. In the case of planes [5, 8] and

spheres through the origin [4] the derivative of /; which appears in the solutions to

the analog of (16) is the (n — l)th derivative, so we choose m = n — 1 = 2A + 1.

The solution of (16) is then

(18)

¡M-_(~!)2A+1_ r(v-x)x-x/2F(l-(l + 2XyX+1-l-y-)

„ dn~x (h{y)"

dy"-1 \   y
dy.

(It may be noted that Wimp's result can be used directly for the a-curves in R2

to avoid the clumsy derivation given in [1].) (18) illustrates the hole theorem: in

order to find / at xo it is only necessary to know / for \y[ > xq.

We now obtain for this paraboloidal Radon transform results about its null

space, and the so-called consistency conditions, both of which are extensions to Rn

of results in R2 [1, 2]. We rewrite (16) using the result [9]

m f(-M+2A;A+i1-,)^:;^:gG,(2A,A+^),

where Gi(p, q, x) is a shifted Jocobi polynomial. These polynomials form a complete

set in (0,1) with a weight function w(x) = z9_1(l - x)p~q, q > 0, p - q > —1. The

weight function for G;(2A, A + 1/2, x) is thus

(20) wx{x)=xx~1/2{l-x)x-xl2.

(16) becomes

(21)

which, with a change of variable, may be written

(22)
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If f(t) = t~k, fi(r/x)x~2X~3/2 = xfc_2A~3/2r~fc, and because G¡ is orthogonal

to any polynomial in x of degree less than I, the integral in (22) will vanish for

k = I + 2X - 1/2,1 + 2X- 3/2,..., 2A + 3/2. Thus the null space contains at least
powers of t with these exponents.

To find the consistency conditions multiply (18) by rM and integrate:

dt
/•oo /-co /-oo / i        \ A —1/2

(23) j     fl(r)r»-xdr = const J     r" dr j     /,(t)tAG« í 2A, A + ±, M

= const f    fi(t)tx+>i+1dt í x"-x+1/2GiÍ2X,X + ^,x\wx{x)dx.

Again using the orthogonality of the G/, the x integral will vanish if pt — X = I — 3/2,

I — 5/2,..., —1/2. Thus the consistency conditions may be written

'—1 /-oo

(24) £a"W     fi(r)rl-WV-mdr = 0,
m=o      Jo

where the am are / arbitrary numbers, and (24) may be integrated by parts (n — 1)

times to give

(25) £afc/    /<»-1>(r)rA-K1/2>+*dr,

where the a^ are other arbitrary constants.

The author would like to thank E. T. Quinto for helpful suggestions about a first

draft of this note.

Appendix A. Equation numbers in this section such as {An) are the analogs

of (n) in the main text.

The /3-curves are defined by the equation

(AI) rß = pßcos{ßcos-1{t: ■ ri)} = p"/»(£ • n),

and the delta-function of unit weight which is concentrated on these surfaces in

(A2) (V/rW^-AU ■»?))■

On expanding / and / in spherical harmonics, applying the Funk-Hecke theorem,

and defining F¡ and F% as in (11) we obtain the integral equation for the /3-surfaces:

<A13) ^ = cf®i*<»>c<H>~'(;)})
.JX-l/3

xsi„- (icos- (i)}.™ (,_-,

For ß — 1/2 (cardioids) (A13) reduces to

(A16)    rxfi(r) = Kt f fi{t)t3XF(-l, I + 2A; A + 1/2; 1 - t/r)(l - i/r)A_1/2 dt.
Jo
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This is precisely of the form of the integral equation (B8) given in Appendix B and

we can write down its solution from (B9):

„5A + 1 e.t~.\ - ("I)"
P5A+7i(p) =

(47r)A+1/2r(A + l/2)

(A18) x [ ^{y^Mv)}F (l. -I - 2A; A + \; (l - ?))

/ \ A-l/2

x(J-i)     y2Xdy>

where a, b, c, and m have been identified as they were for a — 1/2. (A18) illustrates

the "hole"-theorem for this case: in order to find / for some value of p it is only

necessary to know / for [y\ < p.

In (A16), F{-, •; •; •) may again be expressed as a shifted Jacobi polynomial and

use of the orthogonality of these polynomials yields the following information about

the null-space of the transform and its consistency conditions:

(A22) the null-space of the transform contains /¡(r) = r~>, where

7 = I - 2X - 3/2,1-2X- 5/2,..., -2A - 1/2,

/■oo

(A23) /     fi{r)r-adr = 0   if s = I - 1/2,1 -3/2,.. .,3/2.
Jo

Appendix B. An extension of a result due to Wimp [13].

Sneddon [12, p. 295, Problem 4-21] gives an identity which may be rewritten

(Bl)t

Í [u - s)c_1(i - u)m~c-lF (a, b; c; 1 - -) F (-a, -6; m - c; 1 - |) u~m du

_ r(c)r(m - c) sc-m{t - s)™-1

r(m) tc

where 0 < c < m = integer. The substitution u = st/v in (Bl) gives

f (t - v)c-x{v - s)m-c-lF (a, b; c; 1 - - } F (-a, -b; m - c; 1 - -) dv
(B2)     J° \ vj     \ vJ

(t-sy
T(c)T{m-c) ,TO_!

r(m)

Consider the integral equation

(B3)
/OO

(x-y)c-xF(a>b;c;l-y/x)G(x)dx,
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where G(x) is a smooth rapidly decreasing function of x. Multiply (B3) by

F(-a, -b;m — c; 1 - y/t)(y — c)m~c~1y~m and integrate y from t to oo. Inter-

changing the order of integration on the R.H.S. yields

/
H(y)F(-a, -b;m - c; 1 - y/t)(y - c)m-c-xy-m dy

/»OO

= (-l)m_1 /    G{x)dx
(B4) Jt

x  /   F(-a, -b;m - c; 1 - y/t)F(a,b;c; 1 - y/x)
JX

x (t - y)m~c-x{y - xf-ly-mdy.

Use of (Bl) gives

,„„ riîfe r mF (-*■ -*- -c; ' - ?){y - ,r~~v" *
(B5J /-oo

= /    xc-mG(x)(x-i)m-1dx = /,

and since dmI/dtm = (-l)m(m - l)!G(t)ic-m, we have

,     N     G(t)tc~m = -. [~})m    . j^ ¡°° H(y)F (-a, -b; m - c; 1 - %)
(B6)     w r(c)r(m - c) dtm yt     w  V   *   '       '     */

x(y-í)m"c_1ícy"má2/.

The derivative may be taken under the integral sign to yield, as the solution of

(B3),
(B7)

G^ = mnm-c) r H(m)^F h> -*m -c; 1 - ?) <* - i)m"c"1 *»•

where if(m) indicates the mth derivative of ii.

Consider now the integral equation

(B8) H(y) = f\y - xf-lF{a, b;c;l- x/y)G(x) dx.
Jo

Using the same procedure and the identity (B2) we find the solul

( — ■\\m--l rp

tm°V = Tic)rlm-c) L «"W* - y^-1

x F I -a, -6; m - c; 1 - - J yc dy.
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