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REMOVABLE SETS OF SUPPORT POINTS
OF CONVEX SETS IN BANACH SPACES

R. R. PHELPS

ABSTRACT. A corollary of the Bishop-Phelps theorem is that a closed convex

subset C of a Banach space can always be represented as the intersection of its

supporting closed half-spaces. In this paper an investigation is made of those

subsets S of C such that C is the intersection of those closed half-spaces which

support it at points of C\S. This will be true for sets S which are "small"

relative to C, where smallness can be measured in terms of dimension, density

character, or tr-compactness.

Suppose that C is a nonempty closed convex subset of a Banach space E. A

point x G C is called a support point of C if there exists a nonzero functional

/ G E* which attains its supremum on C at x. Any such functional is said to be a

support functional of C and the set of all support points is denoted by supp C. It is

known [1] that the support points of C are always dense in bdry C, the boundary

of C, and that the support functional of C are norm dense among those which are

bounded above on C. A corollary of the methods used for these results is the fact

that C is always the intersection of all those closed half-spaces which are defined

by support functionals [1, Corollary 2]. This result is trivial, of course, if C has

nonempty interior, since every boundary point of C is a support point. In this case,

in fact, it is easily seen that C can be represented as the intersection of those half-

spaces which support it at the points of D for any dense subset D of bdry C (see

part (iv) of Theorem 1, below). This fact has played a key role in characterizing

those generators of Co-semigroups of operators which leave invariant a given closed

convex set with interior [2, 3]. In considering the extension of his work [2] to more

general convex sets, K. N. Boyadzhiev raised the question (in a letter to the author)

of whether one could express C as the intersection of those closed half-spaces which

support C at some proper subset of supp C. The purpose of this note is to give

some answers to this question.

A little thought shows that one has to use some care in deleting subsets of supp C.

For instance, if C is a line segment, then a point x of F\C on the line determined

by C can be separated from C only by those support functionals which attain their

maximum on C at the endpoint nearest x; that is, one cannot remove that endpoint

from supp C and still separate x from C by a support functional. (If the dimension

Of E is at least two, then every point of C is a support point, so supp C minus

a single point is still dense in bdry C.) If C is infinite dimensional, then one can

remove a finite subset S of supp C; in fact, as we show below, one can remove a

finite dimensional subset and still obtain C as the intersection of half-spaces which
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support it at the remaining points. The same conclusion will obtain if we remove

a rj-compact set S and C is not cr-compact, or if S is an infinite set whose density

character is less than that of C. (The example of a segment described above shows

why we have assumed that S is infinite.) If the interior of C is nonempty, then one

can remove any subset of bdry C whose complement is dense in the boundary.

Recall that the dimension dim A of a subset A of a linear space is the algebraic

dimension of its affine span. Recall, also, that the density character dens A of a

set A is the smallest cardinal number a such that A contains a dense subset of

cardinality a. We denote by Br(y) the open ball of radius r > 0 centered at y G E.

If \\x — y\\ > r, we define the drop D{y,r,x) to be the convex hull of {x} and the

closed ball Br(y)~.

1. THEOREM. Suppose that C is a nonempty closed convex subset of a Banach

space E and that S is a subset o/bdry C. Assume that either

(i) S is finite dimensional and 1 + dim S < dim C, or

(ii) S is infinite and dens S < dens C, or

(iii) S is relatively o-compact and C is not o-compact, or

(iv) C has nonempty interior and (bdry C)\S is dense in bdry C.

Then G is the intersection of those closed half-spaces which support it at points

ofC\S.

PROOF. Since the dimension of a finite-dimensional set (or the density character

of any set) is the same as that of its closure, to prove the theorem under hypotheses

(i), (ii), or (iii), we may assume without loss of generality that the set S is closed.

(We will prove part (iv) later.) Suppose that y G E\C, let d = dist(y, C), and let

U = B5d/4(y) n C. This relatively open subset of C is obviously nonempty; we

will, in fact, show below that there exists a point z G U such that the segment

[z,y] misses S. Suppose that this has been done. Since [z,y] misses the closed set

S, some neighborhood of [z,y] also misses S; in particular, for sufficiently small

0 < e < d the drop D(y, e, z) will miss S. From Br0ndsted's proof (and subsequent

remark) [3, Theorem 3] of Danes' "drop theorem" [4], there exists x G D(y,e,z)

such that D(y,e,x) D C — {x}. The separation theorem applied to C and the

interior of D(y,e,x) yields / G E*, ||/|| = 1, such that sup f(C) = f(x) < f(y),
that is, / supports Cat a point x of C\S and strictly separates y from C.

It remains to show that under hypothesis (i), (ii), or (iii), we can choose z GU

such that [z, y] misses S. Suppose that this were not the case, that is, suppose

that [u,y] intersects S for each u G U. We will show first that this implies that

the affine span M of C U {y} equals the affine span L of S U {y}. Indeed, since

[u, y] n S C U, we can assume without loss of generality that 0 G S D U and take

L and M to be the linear spans of S U {y} and C U {y}, respectively. Obviously,

L c M. Suppose that x G C; then since 0 is a relative interior point of C, we can

write x = Xu for some u G U and A > 0. By hypothesis, there exists 0 < p < 1 such

that s = pu + (1 — p)y G S; a quick sketch will convince one that x is in the linear

span of s and y, hence in L. [Explicitly, x = p~xX{s — (1 — p)y}-] Since C C L we

must have M — L. This equality implies that

1 + dim S > dim sp[5 U {y}] = dim sp[C U {y}] > dim C,

which contradicts hypothesis (i). It also implies (if S is an infinite set) that dens S =

dens sp[5 U {y}] = dens sp[C U {y}] = dens C, which contradicts hypothesis (ii).
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Finally, if S is cr-compact, then the subspace L will be rr-compact; since C C L, we

conclude that C is tr-compact, contradicting hypothesis (iii).

Suppose, now, that the hypotheses in (iv) are satisfied. Let D be the convex hull

of y and int C, the interior of C, and let V — D n bdry C; this latter is obviously a

nonempty relatively open subset of bdry C. Since (bdry C)\S is dense in bdry C,

we can choose z G V\S. By the separation theorem there exists g G E*, \\g\\ = 1,

such that sup g{C) = g{z). Since z G V, there exist x G int C and 0 < A < 1 such

that z = Xx + (1 - X)y. Necessarily, g(x) < sup g(C) and hence g(y) > sup g(C),

that is, g strictly separates y from C, which completes the proof.

It is not difficult to show that if C is infinite dimensional with nonempty interior,

then any subset S of bdry C which is relatively locally compact or of first Baire

category necessarily satisfies the density hypothesis in (iv).

While the conditions described in the theorem above are sufficient, none of them

is necessary. For instance, if C is a triangle in the plane, then it is the intersection

of three half-spaces, so one can remove the entire boundary, with the exception

of one point [resp. a proper open subinterval] in the relative interior of each side.

This shows that the conclusion to the theorem can hold even when the hypotheses

in either (i), (ii), or (iii) [resp. (iv)] fail. This example suggests a characterization

of "removable" sets for finite-dimensional polyhedra pointed out to us by Thomas

Armstrong: For such a polyhedron, the conclusion of Theorem 1 holds if and only

if C\S intersects every maximal proper face of C. This result led Armstrong to

formulate the following proposition, which gives a necessary condition for S to be

removable. We call a nonempty closed convex subset F of a closed convex set C

with nonempty interior a face of C provided there exists g G E*, \\g\\ — 1, such that

F = {xGC:g(x) = mpg(C)}.

2. PROPOSITION. Suppose that E is finite dimensional and that C is a bounded

closed convex subset of E having nonempty interior. If S C C and if C is the

intersection of the closed half-spaces supported by (bdry C)\S, then the closure J

of this latter set must intersect every maximal proper face F of C.

PROOF. Assume, without loss of generality, that 0 G int C, and suppose that

F is a maximal proper face of C. Choose a point y in the interior of F (relative

to the affine variety generated by F). Since y is in bdry C, for any A > 1, the

point Ay is not in C. By hypothesis, then, for each n > 1 there exist ||/n|| = 1

and xn G (bdry C)\S such that /n[(l + n~1)y] > sup fn{C) = }n{xn). Choose

convergent subsequences (we call them {xn} and {fn}) with xn —> x G J and

/„ -» /. If w G C, then

f(w) = lim fn(w) < lim inf /n[(l + n~x)y] = lim fn{y) = f{y),

so f{y) = SUP /(C). It is also easily shown that f(x) = sup /(C). Since y is in

the relative interior of F, we have f(z) = sup /(C) for every z G F, that is, F is a

subset of the face G — {z G C: f(z) = sup /(C)}. The latter is proper since / ^ 0

and C has nonempty interior. By maximality, this implies that F — G, and hence

x G F n J, which completes the proof.

It seems difficult to find a condition on S which will be both necessary and

sufficient for removability, even in the case when C has nonempty interior. Our

sufficient condition (iv) in Theorem 1 above requires that the set J of Proposition
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2 be all of bdry C. Our next proposition shows that this can be sharpened by

requiring that J only intersect each maximal proper face of C, provided C has

nonempty interior and is smooth, that is, for each point x in the boundary of C

there exists precisely one linear functional of norm one which attains its maximum

on C at x.

3. PROPOSITION. Suppose that C is a closed convex subset of E which has

nonempty interior and is smooth. If S C C is such that the closure J of (bdry C)\S

intersects every maximal proper face of C, then C is the intersection of those closed

half-spaces which support it at the points of (bdry C)\S.

PROOF. Suppose that y G E\C. Let U be the (relatively open) nonempty

intersection of bdry C and the convex hull K of int C U {y}. Choose any point

x G U and / G E*, ||/|| = 1, such that f(x) = sup /(C). Let F be the closed
face consisting of all points in C where / attains its maximum. It follows easily

from the smoothness hypothesis that F is maximal, hence F n J is nonempty.

Moreover, F C U; indeed, if there existed z G F\U, then necessarily z G bdry K

and we could choose g G E*, \\g\\ = 1, such that g(z) = sup g{K) > sup g{C).

Since g(z) = sup g(C) — g{y) and f(y) > sup /(C) = f{z), we would have / ^ g,

contradicting the smoothness hypothesis at the point z. Since U is a relatively

open neighborhood of F, the fact that F intersects J implies that there is a point

of (bdry C)\S in U. The support functional to C at such a point will strictly

separate y from C (as shown at the end of the proof of Theorem 1).

If C has nonempty interior and is strictly convex, then to say that J intersects

every maximal proper face is equivalent to saying that (bdry C)\S is dense in

bdry C. Thus, for strictly convex and smooth C with interior, Proposition 3 is no

more general than Theorem 1 (iv).
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