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A MAXIMUM PRINCIPLE
FOR QUOTIENT NORMS IN 77°°

ERIC HAYASHI

ABSTRACT. Let G be a closed subset of the open unit disk D in the complex

plane, and let p denote a general polynomial of degree n which has all of its

roots in G. For a fixed h in H°°, \\h — pH^Wfjoo ip[joo is maximized only if

all the zeros of p are on the boundary of G.

In studying a problem on the spectral radius of matrices, V. Pták was led to

the following extremal problem: Let 77°° denote the space of bounded analytic

functions on the open unit disk D of the complex plane C, and let ft be a fixed

function in 77°°. Among all polynomials p of degree n whose zeros are in {z : \z\ < r}

for a fixed r < 1, find one which maximizes \\h — pH°°\\ in the quotient space

77°° /pH°° (see [2, 5]). Actually, Pták considered the case when h is of the form

hiz) = zm for a fixed integer m. In fact, he showed that in the case m — n, the

extremal polynomial can be taken to be (2 — r)n. It was conjectured that this is

true for m > n as well as that, for the general h in 77°°, each extremal p has all of

its zeros on the circle {|z| = r}. The latter conjecture was recently proved by N. J.

Young [4] in the special case that h is a Blaschke product of degree n, though the

conjecture remained open even in the case h — zm for m > n. The contribution of

this paper is to prove the following maximum principle for the extremal polynomial.

THEOREM 1. Let G be a closed subset of D and let p denote a general poly-

nomial of degree n which has all of its roots in G. For a fixed h in H°°, let

F(p) = \\h — pH°° \\hoc/pHoc. If F is not constant as p varies, then it attains its

maximum at p only if all the zeros of p lie on the boundary of G.

The work of Pták and Young mentioned above has been largely operator-

theoretic. In contrast, the present treatment is completely elementary, relying on

the Schur algorithm for the solution of the Nevanlinna-Pick interpolation problem

(see [1, 3]). Since the treatment here is somewhat nonstandard, a brief description

of the Schur algorithm is given below.

Let ai,a%,..., an be points in D and W\, W2,■■■, Wn the values to be interpo-

lated along the Oj by a function / in the unit ball S of 77°°. We allow repetitions in

the afs as long as they occur consecutively. For each k, let dk denote the number

of times aj = Ofe for j < k. We are looking for a function / in £ which satisfies

f{dk)iak)=wk,        fc = l,2,...,n.

The Schur algorithm proceeds inductively as follows. Suppose that / is in S and

fits the given data. Take a\. If \w\\ > 1, no solution exists. If |u;i| < 1, the function
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/i defined by

m ,       f-wi    1-äiz
(1) fl - 7^7 ' ï^uïj

belongs to E. Writing 61 = (z - ai)/(l - â\z), we get that

(2) / =   blfl+W
[) J      l + wi&iA

and no matter what /i in E is, the right hand expression above reduces to w\ when

evaluated at z = ai. It is easily checked that, for any positive integer k, the first k

derivatives of / at ai can be determined by the first k — 1 derivatives of f\ at ai

and vice-versa. Likewise, at any other node, the interpolation data for / determine

interpolation data for /i and vice-versa. So the problem of finding / in E reduces

to solving a lower order interpolation for f\ with revised data. If one proceeds

inductively, there are three possibilities.

(i) The process reveals at some point that no solution exists in E.

(ii) The process terminates at the jth stage (0 < j < n — 1) yielding a unique

solution. This solution is a Blaschke product of degree j. Conversely, if a Blaschke

product of order j < n — 1 is among the solutions, then the process terminates at

the jth stage.

(iii) The process can be carried through the nth stage in which case the choice

of /„ is indeterminate.

Now suppose the interpolation problem has a solution in E for the data {ai,...,

an-i;wi,... ,wn-i}. Let an in D be added. Then the set of possible wn for which

the problem with data {ai,... ,an;u>i,... ,wn} can be solved in E is a closed disk

whose center and radius are determined by ai, a2, ■ ■ ■, an and w\, u>2, ■ ■ ■, wn-1. The

augmented interpolation problem has a unique solution if and only if wn belongs

to the boundary of that disk (see [3] or Chapter 1 of [1]). The disk reduces to a

point if and only if condition (ii) is met on or before the (n — 2)th stage.

We need to take a closer look at the Schur algorithm. Let

E(ai,...,an;w;i,...,w;n) = {/ £ E: /(dfc)(afc) = wk,k = 1,2,... ,n}

and

D(oi,...,Ofc+i;t»1,...)Wfc) = {/(d*+l)(ofc+i): /e E(ai,...,afe;wi,...,wfc)}.

Then, from (1) and (2),

Y,iai,...,an;wi,...,wn) = \f = t -,   _ ,  * : f> G E(o2,... ,an;w2, ■ ■ ■ ,wn) \,
{        l + u>ibi<p J

where the Wj are computed as follows:

Case 1. (a, ^ a\). The first d derivatives of <p at aj are determined by the first

d derivatives of / and vice-versa. Thus,

^ = [(/-^i)/(i-*i/)M(<ij)K)
for any / in E(di,...,a3•; wi,... ,Wj).

Case 2. (a, = ai). From (1), letting g — (1 — äi2)/(l — w\f), we have

*>■= E fy"1)/(ro+1)(«i)ff(j-1-m)(a1)= E (jm1)rvm+l9^-^ia1).
m=0 V / m=0  V /
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Hence, in either case, if E(ai,... ,aj\ wi,... ,Wj) is nontrivial (i.e., contains more

than one function), then Û12,..., Wj vary continuously with w\,... ,Wj.

Though it is not used in the proof of Theorem 1, the following proposition is of

interest in its own right.

PROPOSITION 1. Suppose D(oi,..., ak+i;wi,..., wk) has nonempty interior.

Then it is a disk whose center and radius vary continuously with u>i, u>2, ■ ■ ■, wk.

PROOF. (INDUCTION ON k). For k = 1, there are two cases:

If a2 7¿ai,

Diai,a2\wi) = {[biia2)w + wi]/[l + w>i&i(a2)iu]: |w| < 1}.

If Ü2 = 0,1,

D(oi,Oi;«;i) = {w[l-|w1|2]/[l-|ai|2]: |w| < 1}.

Now suppose that the lemma holds for Dj+i = D(ai,.. .,a¿+i; wi,... ,Wj)

whenever j < k, and suppose that Dk+i has nonempty interior. Then

(3) Dk+1 = {/(^^(ttfc+i): / € E(0l,..., ak; wu .. .,wk)}

= {[(6lfp + Wl)/(1 + w1b1p)}(dk+i)iak+1):

if£ E(02,...,Ofc;t&2,...,«>fc)}.

If dfc+i = 0, then Dk+i is a Moebius transformation of Z)(a2,...,ak+i;w2, ■ ■.,wk)

with parameter w\ so that the desired result holds by the continuity of the Wj

and the inductive hypothesis. For the case 1 < dk+\ < k, let / be a solution to

the fcth order interpolation problem, and let ip be related to / as in (3). Then

[1 + W\bi<p]f = bi<p + iui. Suppressing the subscript k + 1, we have

fwia)[l + w1b1(a)<pia)}= - ¿ ( M/(m)(a)[l + «iM(*-m)(«0
m=0 \mJ

m=0   \       /

f««+^iak+1)=R + Cw,

where w £ 7?(a2,..., ak+\; W2,..., wk) and where R and C are rational functions

oi wi,... ,wk, W2,. ■ ■ ,wk. By the inductive assumption and the continuity of the

Wj, the desired result again follows. The last remaining case dfc+i = fc is treated in

a similar fashion.

The next two propositions are used in the proof of Theorem 1.

PROPOSITION 2. Suppose that E(ai,..., an; W\,..., wn) contains a Blaschke

product B of order m < n — 1. Then there exists ¿0 > 0 such that whenever

\uij — w'A < 6 < ¿0 for j = 1,2,... ,m, then E(ai,... ,am; w^,... ,w'm) contains

a Blaschke product b iwhich depends on the «/'•) of order m. Moreover, b can be

chosen so that \\B — bW^, ->0as supljiüj — w'A: 1 < 3< m} —► 0.

PROOF. If m = l, then

B = ibiû)2 + u>i)/(l + ^161^2)
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so the desired conclusion follows from the continuity of w>2. We now proceed induc-

tively. If E(oi,..., an; wi,..., wn) contains a Blaschke product of order m < ft— 1,

then 7J(ai,..., aTO+i; wi,..., wm) is a nondegenerate disk and wm+i belongs to

its boundary. Also, B = (6173 + iyi)/(l + vlibiB), where B is a Blaschke prod-

uct of order m — 1 in E(o2,... ,am+i;w2, ■ ■. ,wm+i). By induction, there exists

r)o > 0 such that whenever \w'- — wf\ < n < 770 for j = 2,..., m, then there exists

a Blaschke product b of order m — 1 in E(o2,..., om; w'2, ■. ■, w'm) and such that

ll-ß-b\\<x —> 0 as sup{|wj — w'A: j = 2,...,m} —> 0. The desired result now follows

from the continuity of the wj as functions of wi,..., Wj.

Also needed will be the following well-known connection between interpolation

and approximation theory. Suppose that b is a Blaschke product with zero sequence

01,..., an (all repetitions are assumed to be consecutive), and let h be a function

in 77°°. Then a function / in 77°° is said to interpolate h along the zeros of b if

f — h belongs to 677°°. Of course, this means that h is a solution to the interpo-

lation problem with data {ai,... ,an;w\,..., wn} where each wk is a derivative of

appropriate order of h at ak- Now let d = dist(/i,è77°°) which is defined by

dist(/i,677°°) = M{\\h - bgWoo-. g is in 77°°}.

Then d is characterized in terms of interpolation of h along the zeros of 6 as follows.

PROPOSITION 3. Let h be in H°° and let b be a Blaschke product of order
n. A positive number c equals dist(/i, 677°°) if and only ifh/c can be interpolated

along the zeros ofb by a Blaschke product B of order at most n — 1. Alternatively,

dist(/i, 677°°) can be characterized as the least real number t > 0 such that h — tg

belongs to bH°° for some g ¡tiE.

PROOF. If dist(h, 677°°) = 0 there is nothing to prove. Suppose that B is

a Blaschke product of order < n — 1, and that h/c — B is in bH°°. Assume that

d — dist(/i, 677°°) < c. Then there is a function g in 77°° such that ||/i —i>ff||oo < \CB\

on the boundary of D. Thus, cB — (/i - bg) is in 677°° and, by Rouché's theorem,

has at most n — 1 zeros in D counting multiplicity. This is absurd, so c < d. To

establish the opposite inequality, note that h — cB = bf for some / in 77°°. Thus,

c = 11 h - bf 11 oo > dist(/i, bH°°) = d. The proof is concluded by the observation that
for c = infjr > 0: (/i/r - 677°°) HE/ 0}, there exists a Blaschke product B of

order < n — 1 such that h/c — B is in bH°° (this follows from the Schur algorithm).

Theorem 1 will now be proved by induction on the number of zeros of p. If

p(z) — z - a, where a is in the interior of G, then dist(/i,p77°°) = |/i(a)| since

h - hia) £ pH°° and, for any g in 77°°, \\h - pg\\<x> > IMa)l- If b is not constant,
then there is an a' near a in G such |/i(a')l > |Ma)l-

Assume now that the theorem has been established for all p with at most n — 1

zeros. Let p have zero sequence a-i,... ,an in G listed according to our convention

on repetitions, and assume that an is in the interior of G. We shall show that either

h = cB, where c is a constant and where B is a Blaschke product of degree at most

n - 1 (in which case F(p) = c for all p with n zeros in D), or that F(ç) > F{p) for

some polynomial q of degree n with zeros in G near the zeros of p. Let b be the

Blaschke product with zero sequence a\,... ,an and let d = F(p) = dist(/i, bH°°).

We may assume that h is not identically zero. If d = 0, just perturb an by a small

amount to move it away from the zero set of h while still remaining in G.   For
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d > 0, there exists a unique Blaschke product B with at most m < n — 1 zeros

which interpolates the function h/d along the a,. If m < n - 1, then we also have,

by Proposition 3, that

d = dist Ih,      f[   iz-ak)   77°° J .
\       Lk=n—m J /

By the inductive assumption there exists a polynomial pi whose zeros lie in G

and such that d is less than dist(/i,pi77°°). Now let g be a polynomial obtained

from pi by adjoining n — m — 1 zeros in G. Then F(ç) > 7?(p1) > Fip). If

m = ra — 1, we have for each small s > 0, a Blaschke product Bs of order n — 1

which interpolates /i/(d + s) along oi,..., a„_i and such that ||jB - Bs||oo —► 0 as

s —> 0. Let f„ = Bs — h/id + s). Then fs —> B - h/d as s —> 0. If ak ^ afc+i =
• ■ • — an, then either /i = dB or, by Hurwitz' Theorem, some fs has n — k zeros

(counting multiplicities) in G near an. Denote them by ak+l,...,a*. Letting q

be a polynomial of degree n with zero set {ai,...,ak,ak+1,..., a#}, we have, by

Proposition 3, that Fiq) = d + s > d.

Finally, to relate the work in this paper to the operator-theoretic context of Pták

and Young's original conjecture, we have (see [2]), as a corollary to Theorem 1,

THEOREM 2. If h £ H°° and 0 < r < 1, then among all n x n contractions

A with all eigenvalues in the disk {z: \z\ < r}, ||/t(A)|| attains its maximum at a

matrix A having all of its eigenvalues on the circle {z: \z\ = r}.
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