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EXTREMAL MULTILINEAR FORMS ON BANACH SPACES

I. SARANTOPOULOS

Abstract. Suppose that L is a continuous symmetric m-linear form defined on a

complex Banach space E, and L is the associated homogeneous polynomial. If

\\L\\=(m"'/m\)\\L\\,

we prove that E contains an almost isometric copy of /*,. In particular if £ is an

m-dimensional space, then E is isometrically isomorphic to llm. We also prove that

the only examples of such extremal L which achieve their norm are suitable

"extensions " of a known example given by Nachbin.

Throughout this paper K denotes either the complex field C or the real field R.

Given any index set T we denote by ll(T) the collection of all AT-valued families

x = (x,) such that

IM|:= Ekl
r

is finite. If T is the set of positive integers we denote ^(T) by I1, while if

T = {1,..., « }, where « is a positive integer, we denote ^(T) by l\. If £ is a vector

space over the field K we write Em for the product Ex ■ ■ ■ XE with «i-f actors.

An w-linear form L: Em -» K is said to be symmetric if

L(xx,..., xm) = L(x„(1),..., x„(m))

for any x,,..., xm in E and any permutation a of the first m natural numbers.

If £ is a normed space over K, we denote by ^^(E,K) the space of all

continuous symmetric m-linear forms L: Em -* K. A mapping P: E ~* K is said to

be a homogeneous polynomial of degree m if P = L for some L Gif^(£', K),

where L is defined by

L(x) = L(x,...,x).

If L e ¿¿'¿(E, K)we define the norms of L and L by

||L||= sup{|L(x)|: ||x||< l},

||L||= sup{|L(x,,...,xm)|: ||x,||< 1 (/ = l,...,m)).

Mazur and Orlicz investigated relationships between ||L|| and ||L||, and in the

Scottish Book [8] conjectured that for any normed space E

K(m,E) < mm/m\,
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where

K(m,E) = min{M: ||L||< M\\L\\ for every L e ¿?¿(E, K)}.

(We shall write R(m, E), C(m, E) instead of K(m, E) if the normed space is real,

complex respectively.) This conjecture was subsequently proved by Martin [4].

Notice that the constant mm/m\ depends only on the integer m and not on the

normed space.

Let $ 6 &¿,{llm, K) be defined by

(1) m!*(x1,...,xB,)=   E *"(1) • • • *mm)>

where x' = (x'n)™_x for / = 1,..., m and Sm is the set of permutations of the first

w-natural numbers. It can be shown, see [1, p. 45], that for this special $ we have

||$||=(mV«!)llH
Hence the universal constant mm/m\ is the best possible. In the following, E

denotes a complex normed space, unless otherwise specified. The distance between

two Banach spaces X and Y is defined by

d(X, Y) = iriF{^ ||y ||||y_ 1 (I: T is a linear isomorphism from Xonto Y}.

We say that X contains an almost isometric copy of Y if for any e > 0, there exists a

subspace Z of X such that d(Y, Z) < 1 + e. (In other words Y is (1 + e)-isomorphic

toZ.)

We now come to our first main result.

Theorem 1. Suppose that C(m,E) = mm/m\ for some positive integer m. Then E

contains an almost isometric copy ofilm.

To prove Theorem 1 we need a polarization formula. We define the function sB «

on [0,1] by

sn,ß{t) = eiß"r„(t),       « = 1,2,...,

where ß = (ßx, ß2,... ) is a sequence of real numbers and r„ is the «th Rademacher

function. The functions {sn ß}™=x form an orthonormal set in L2([0,1], dt), where dt

denotes Lebesgue measure. We omit the proof of the following lemma which is

similar to the proof of Lemma 2 in [5].

Lemma 1 (Polarization formula). // E is a complex vector space, if L is a

symmetric m-linear form, and if"x1,...,xm belongtoE, then for any ß = (ßx,.. -,ßm)

(2)

m\L(xx,...,xm)

= e~2i<*+ "' +W Í1 ^(0 • • • 'mj(t)L{slJt(t)Xl +■■■ +sm.ß(t)xm) dt.
Jo

Proof of Theorem 1. For given e > 0,0 < e < 1, set

ex = (my2m)[l-(l-e/2m)m],
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where «j is a positive integer. Since C(m, E) = mm/m\ there exists an L g SPf¡,(E, C)

and unit vectors xx,...,xminE such that

(3) \L(xx,...,xm)\> {(mm - ex)/m\)\\L\\.

If ax,..., am are any complex numbers, we can assume that

|ö1|= max{ |a,-|: / = 1,..., m }.

Suppose that ak = \ak\e"*k, k = 1,...,m, and put /}■ = a ■ - ax, j = 2,.. .,m. Then

m

E KI>K*i + a2x2 + ••• +amxm\\

= |||a1|x1+|a2|e'^x2+ ■•• +\am\eifl»'xm\\

= |||a1|(x1 + Ä2 + ...+e^xm) + e^x2{\a2\-\ax\)\\

+ ■■■+e^xm{\am\-\ax\)\\

m

^lailllxj + eiß*x2 + ••• +eiß-xm\+  £ \ak\-(m - \)\ax\.
k = 2

So if we can prove that

(4) || Xj + eißlx2 + ■■■ +eiß-xm\\ ^ m - e/2

we shall get

m m

(1 - e/2) £ \ak\^\\axxx + a2x2+ ■■■ +amxj|<  E I«aI-
k -1 k -1

Thus span  (x,,...,xm} will be (1 + e)-isomorphic to llm and the theorem will

follow.

To prove (4) observe that (3) and the polarization formula (2), with /?, = 0, imply

I   \\exxx + e2e^-x2 + ■■■ +eje"-xmf > (mm - ex)2m.

e,= ±1

Now from this last inequality we have

¡Xj + e'^x2 + ■ • • +e'ß«xmC +(2m - \)m'" > (mm - ex)2m

and this proves (4).

From Theorem 1 we conclude that if C(m,E)= mm/m\ for every m, then E

contains uniformly isomorphic copies of lxm for all m. So if E is a Banach space,

then E has no type p > 1, since if it did (see [6]) it could not contain uniformly

isomorphic copies of llm for all m. (For the definition of type p, see [3, p. 72].)

Notice that the condition that E should contain an almost isometric copy of llm

does not always imply that C(m, E) = mm/m\. To see this consider the complex

Banach space lx. This is the space of all bounded complex-valued sequences

x = (x,) under the norm

Ixlloc = sup{|x,|: / g Nj.
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We know [3, p. 73] that l°° is not of type p for any p > 1 and so by Lemma l.e.4 of

[3], /°° contains almost isometric copies of llm for every m. However

C{m,l°°) < mm/2(m + l)(m+1)/2/2mm\ < m"'/m\.

This was established by Harris [2, p. 154], see also [7].

Our second main result concerns norm-achieving extremal multilinear forms.

When E is a Banach space with C(m, E) = mm/m\ we say that L g -S^(£, C) is

extremal if ||L|| = («3m/«3!)||L||. We shall show that the only examples of such

extremal L which achieve their norm are suitable "extensions" of the canonical

example (1).

Given a positive integer m, let nx,...,nk be nonnegative integers with «,

+ ••• +nk = m. If L G &¿(E, C), we write L(x¡'> ••• x"kk) for

L(xx,..., xx,..., xk,..., xk), where xx appears «, times, x2 appears «2 times, and

so on.

Theorem 2. Let E be a Banach space and let Le^(£,C) satisfy \\L\\ =

(mm/m!)||L||. If L achieves its norm at (xx,..., xm) G Em, where xx,...,xm are unit

vectors in E, then

(a) L achieves its norm, and

(b)L(xx)=  •••  =L(xJ=0.

This theorem is an immediate consequence of the following more general result.

Theorem 2'. Let E be a Banach space and let L g i?^(£, C) satisfy \\L\\ =

(wm/w!)||L||. Then the following are equivalent:

(i) L achieves its norm at (x,,..., xm) G Em, where x,,..., xm are unit vectors in

E.

(ii)(a) L achieves its norm at the points (e'°lxx + - - ■ +e'e",xm)/m for all choices

of real numbers 6x,...,6m, and

(b) L(x"' ■ ■ ■ x%") = 0 for all m-tuples («,,..., nm) of nonnegative integers, at

least one of which is greater than 1, satisfying «, + ■ • ■ + nm = m.

(iii)(a) L achieves its norm at the point (e'Blxx + ■ ■ • -\-e'6mxm)/m for some choice

of real numbers 0x,...,0m, and

(b) L(x"' ■ ■ ■ x^m) = 0 for all m-tuples (nx,..., «„,) of nonnegative integers, at

least one of which is greater than 1, satisfying nx + ■•• +nm = m.

Proof. If (i) holds, then

(5) ||L|| = |L(x1,...,x„,)|=(mV^OII^II-

We will prove that (5) implies (ii). Let Tm be the w-fold product of the circle group

and let À be Haar measure on Tm. Thus d\(6) = (\/2-n)m ddx ■ ■ ■ d6m and we can

show easily that the following polarization formula holds:

(6) m!L(x1,...,xm)= /    e-** ■ ■ ■ e-'O-L   ¿Zx.eie>   d\(6).



344 I. SARANTOPOULOS

Now from (5) and (6) we get

(mm/m\)\\L\\ = \\L\\ = \L(xx,...,xm)\

= (l/m!) (   e""' ••• <

< (1/m!)/

(l/w!)fii||/

I    m

L\ Ex/

< E V

rfA(0)

rf\(0) < (wm/m!)||L|

So we have

(V)

/ m

E xj»'
U-l

L E */
7 = 1

¡e'^'X! + ■•• +e"-xm||- «i

for all choices of real numbers 6X,...,6m. Thus

|L((e^x1+---+e^xm)/m)| = ||L||

for all real numbers 6x,...,0m and so part (a) is proved. To prove part (b) note first

of all that from the multinomial formula (see [1, p. 38]) we have

{m\/mm)\L{xx,...,xm)\ = \\L\\ =

/    m

L Ee'SlA
\7 = 1

- (l/m-^Ziml/nJ ■ ■ • «m!)L((^x1)"1 • ■ ■ («"-*-)"-) |,

where the summation is over all m-tuples («,,..., «m) of nonnegative integers

satisfying nx + ••• +nm- m. Since the last equation is true for all real numbers

6x,...,em we get

(m!|L(x1,...,xm)|)

= /    \Um\/nx\ ■ ■ ■ nml)L{(e«>xxy> ■ ■ • («*-*„)""J f d\(6).

From the above equation it follows that

E((m!/«1!---«m!)|L(x1". ...<»•) if = 0,

where the summation is over all m-tuples («l5...,«m) of nonnegative integers, at

least one of which is greater than 1, satisfying nx + ••• +nm = m. This proves part

(b).

Since (ii) obviously implies (iii) we have to prove only that (iii) implies (i). But

conditions (a), (b) of (iii) and the multinomial formula give us

||L||=(m!/m"')|L(x1,...,xJ|



EXTREMAL MULTILINEAR FORMS ON BANACH SPACES 345

and since by hypothesis we have ||L|| = (mm/m\)\\L\\, it follows that

||L|| = |L(x1,...,xm)|.

Working in a similar fashion, it can also be proved that if £ is a Banach space

and |JL(x,, ...,xm)| = ||L|| for some Ie^(£,C), where xx,...,xm are unit

vectors in E, then conditions (ii) and (iii) of Theorem 2' are equivalent to the

condition

GO
||L||= (mm/m\)\\L\\.

The following example shows that the converse of Theorem 2 is false, so for

equivalent conditions the complications of Theorem 2' are necessary.

Example. We consider the canonical example (1) in the case m = 3. Then

11*11= (33/3!)||í»||.

Also for the unit vectors x = (1/2,1/2,0), y = (1/2,0,1/2), z = (0,1/2,1/2) of l\

we   have   Ô(x) = 4>(y) = $(z) = 0   and   4>   achieves   its   norm   at   the   point

(1/3,1/3,1/3). However 0(x, y, z) = 1/24 < ||0»||, since ||$|| = 1/6.

Suppose that L Gif^(£,C) satisfies (5) and let F be the restriction of L to

B = spanfxj, ...,xm). Since (7) holds, it follows from the proof of Theorem 1 that

for any complex numbers ax,...,am we have

m

\\axxx + ••• +aOTxJ|= E Kl-
fc-i

Thus B is isometrically isomorphic to lxm. Note also that

\F(xx,...,xm)\={mm/m\)\\F\\.

Now since F satisfies condition (ii)(b) we get the following result.

Corollary 1. Let C(m, E) = mm/m\ and L be an extremal continuous symmetric

m-linear form, which achieves its norm at the point x = (xx,..., xm) of the unit sphere

of Em. Then F = L\ B, where B = span{xx,..., xm) is a continuous symmetric

m-linear form on B, and F = c<ï>, where c is a constant and <t> g ^^(llm, C) is given by

If E is an m-dimensional Banach space, then every multilinear form on E is

continuous. If L is a symmetric m-linear form on E, then L achieves its norm since

the unit ball of Em is compact. Using these remarks we obtain another corollary.

Corollary 2. An m-dimensional Banach space E is isometrically isomorphic to lxm

if and only if C(m, E) = mm/m\. If C(m, E) = mm/m\, then every extremal sym-

metric m-linear form on E is of the form L = c$ for some constant c and $ G ü?„*(/*,, C)

defined by (1).

Finally notice that using techniques similar to those of the proof of Theorem 1, we

can prove Theorem 1 in the case where £ is a real normed space. However for

Theorem 2', if £ is a real Banach space, we need a different approach. We hope to

discuss this in a subsequent paper.
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