A SYMBOLIC CALCULUS FOR ANALYTIC CARLEMAN CLASSES

JAMIL A. SIDDIQI AND MOSTÉFA IDER

ABSTRACT. Let $\mathscr{C}_M(I_\alpha)$ be the analytic Carleman class of \mathscr{C}^∞ -functions f defined in a sector $I_\alpha=\{z\in \mathbb{C}: |\arg z|\leqslant \alpha\pi/2\}\cup\{0\}\ (0\leqslant \alpha\leqslant 1)$ and analytic in its interior such that $\|f^{(n)}\|_\infty\leqslant C\lambda^nM_n\ (n\geqslant 0),\ C=C(f),\ \lambda=\lambda(f).$ In this paper, we give necessary and sufficient conditions in order that $\mathscr{C}_M(I_\alpha)$ be inverse-closed. As a corollary, we obtain a characterization of $\mathscr{C}_M(\mathbb{R}_+)$ as an inverse-closed algebra, thus establishing the converse of a theorem of Malliavin [4] for the half-line.

1. Given a sequence $M = \{M_n\}$ of positive numbers, we say that the sequence $\{A_n\}$, where $A_n = (M_n/n!)^{1/n}$, is almost increasing if there exists a positive constant K such that for all m and n with $n \le m$, $A_n \le KA_m$. P. Malliavin [4] proved that if M is log-convex and the associated sequence $A = \{A_n\}$ is almost increasing, then the algebra $\mathscr{C}_M(I)$ of \mathscr{C}^{∞} -functions on a linear interval I with

$$||f^{(n)}||_{\infty} \leq C\lambda^n M_n \quad (n \geq 0), \qquad C = C(f), \qquad \lambda = \lambda(f),$$

is inverse closed, i.e., if $f \in \mathscr{C}_M(I)$ and $f(x) \neq 0$ for all $x \in I$, then $f^{-1} \in \mathscr{C}_M(I)$. The problem whether the converse is true, viz., if $\mathscr{C}_M(I)$ is inverse closed then the sequence A is almost increasing, was taken up by W. Rudin [6] who proved that it is so if $\mathscr{C}_M(R)$ is a non-quasi-analytic algebra of 2π -periodic functions. Subsequently J. Boman and L. Hörmander [1] proved the same result for arbitrary classes $\mathscr{C}_M(R)$ by a long and ingenious method. The problem whether the converse of Malliavin's theorem is true for classes $\mathscr{C}_M(I)$, where I is a half-line or a finite interval, remains unsolved. Recently J. Bruna [2] studied the related problem for Beurling classes.

In this paper we give a necessary and sufficient condition in order that the algebra $\mathscr{C}_M(I_\alpha)$ of \mathscr{C}^∞ -functions f in a sector $I_\alpha = \{z \in \mathbb{C}: |\arg z| \le \alpha\pi/2\} \cup \{0\} \ (0 \le \alpha \le 1)$ and analytic in its interior such that $\|f^{(n)}\|_\infty \le C\lambda^n M_n$, C = C(f), $\lambda = \lambda(f)$, be inverse-closed. As a corollary we obtain a characterization of the inverse-closed algebra $\mathscr{C}_M(\mathbb{R}_+)$, thus establishing the converse of Malliavin's theorem for the half-line.

2. The analytic Carleman classes $\mathscr{C}_M(I_\alpha)$ have been extensively studied by several authors, notably by B. I. Korenbljum [3] who gave conditions for the nontriviality and the quasi-analyticity of these classes.

Received by the editors January 3, 1986.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 46E25; Secondary 30D60.

Key words and phrases. Symbolic calculus, inverse-closed algebra, Carleman classes.

Research supported by grants of NSERC of Canada and FCAR of Quebec.

Given a sequence $M = \{M_n\}$ of positive numbers, we define the sequence $M^{\alpha} = \{M_n^{\alpha}\}$ by the rule: $N_n = n^{(1-\alpha)n}M_n$, $N_n^c = n^{(1-\alpha)n}M_n^{\alpha}$, where $\{\log N_n^c\}$ is the largest convex minorant of the sequence $\{\log N_n\}$ (cf. S. Mandelbrojt [5]). The class $\mathscr{C}_M(I_{\alpha})$ coincides with the class $\mathscr{C}_{M^{\alpha}}(I_{\alpha})$ (cf. for example J. A. Siddiqi and A. El Koutri [7, Theorem 1]). Using Leibnitz' formula and the fact that $\{\log N_n^c\}$ is convex, it can be easily seen that $\mathscr{C}_{M^{\alpha}}(I_{\alpha})$ is an algebra.

Our main result is as follows:

THEOREM 1. The following assertions are equivalent:

- (a) The sequence $A^{\alpha} = \{A_n^{\alpha}\}$, where $A_n^{\alpha} = (M_n^{\alpha}/n!)^{1/n}$, is almost increasing.
- (b) If $f \in \mathscr{C}_M(I_\alpha)$ and g is analytic in a domain containing the range of f, then $g \circ f \in \mathscr{C}_M(I_\alpha)$.
 - (c) $\mathscr{C}_{M}(I_{\alpha})$ is inverse-closed.

PROOF. That (a) implies (b) follows directly from the formula of Faà di Bruno, viz.,

$$(g \circ f)^{(n)}(z) = \sum_{\substack{k_1 + k_2 + \dots + k_n = k \\ k_1 + 2k_2 + \dots + nk_n = n}} \frac{n!}{k_1! k_2! \cdots k_n!} g^{(k)}(f(z)) \left(\frac{f'(z)}{1!}\right)^{k_1} \cdots \left(\frac{f^{(n)}(z)}{n!}\right)^{k_n}.$$

Trivially (b) implies (c). We now show that (c) implies (a). Put $N_n^c = n^{(1-\alpha)n}M_n^{\alpha}$. The sequence $\{N_n^c\}$ is log-convex in view of the regularization procedure adopted for obtaining $\{M_n^{\alpha}\}$. Let

$$f(z) = \sum_{k=0}^{\infty} \frac{1}{2^k} N_k^c \left(\frac{N_{k+1}^c}{N_k^c} \right)^{-k} h\left(\frac{N_{k+1}^c}{N_k^c} z \right),$$

where

$$h(z) = \sum_{r=0}^{\infty} \frac{(-z)^r}{[(r+1)(2-\alpha)+1]!} \qquad (x! = \Gamma(x+1)).$$

Since

$$|h^{(n)}(z)| \leqslant 2 \frac{n!e^n}{n^{(2-\alpha)n}}$$

and

$$\left(N_{k+1}^c/N_k^c\right)^{n-k} \leqslant N_n^c/N_k^c$$

for all k, because of the fact that $\{N_n^c\}$ is log-convex, we have

$$|f^{(n)}(z)| \le \sum_{k=0}^{\infty} \frac{1}{2^k} N_k^c \left(\frac{N_{k+1}^c}{N_k^c} \right)^{n-k} |h^{(n)} \left(\frac{N_{k+1}^c}{N_k^c} z \right)| \le 4e^n M_n^{\alpha}$$

for all $z \in I_{\alpha}$. Moreover

$$f^{(n)}(0) = \left\{ \sum_{k=0}^{\infty} \frac{1}{2^k} N_k^c \left(\frac{N_{k+1}^c}{N_k^c} \right)^{n-k} \right\} \frac{n! (-1)^n}{[(n+1)(2-\alpha)+1]!}$$
$$= t_n \frac{n! (-1)^n}{[(n+1)(2-\alpha)+1]!},$$

where $t_n \ge N_n^c/2^n$.

Let $g(z) = 1/(\lambda - z)$, where $\lambda > M_0^{\alpha}$. Since $\lambda - f \in \mathscr{C}_{M^{\alpha}}(I_{\alpha})$ and $\mathscr{C}_{M^{\alpha}}(I_{\alpha})$ is inverse-closed, it follows that

$$g \circ f = (\lambda - f)^{-1} \in \mathscr{C}_{\mathcal{M}^a}(I)$$

We, therefore, have

$$\begin{vmatrix}
(g \circ f)^{(n)}(0) \\
= \\
\sum_{\substack{k_1 + k_2 + \dots + k_n = k \\ k_1 + 2k_2 + \dots + nk_n = n}} \frac{n!}{k_1! \cdots k_n!} \frac{k!}{(\lambda - f(0))^{k+1}} \left(\frac{f'(0)}{1!}\right)^{k_1} \cdots \left(\frac{f^{(n)}(0)}{n!}\right)^{k_n} \\
\le C\lambda^n M^{\alpha}$$

so that

$$\sum_{\substack{k_1+k_2+\cdots+k_n=k\\k_1+2k_2+\cdots+nk_n=n}} \frac{n!}{k_1!\cdots k_n!} \frac{k!}{(\lambda-f(0))^{k+1}} \left(\frac{t_1}{(2\gamma+1)!}\right)^{k_1} \cdots \left(\frac{t_n}{((n+1)\gamma+1)!}\right)^{k_n} \leqslant C\lambda^n M_n^{\alpha},$$

where $\gamma = 1 - \alpha$.

If we choose $k_l = k$, lk = n, $k_1 = \cdots = k_{l-1} = k_{l+1} = \cdots = k_n = 0$, then we have

$$\left(\frac{t_l}{((l+1)\gamma+1)!}\right)^k \leqslant C_1 \lambda_1^n \frac{M_n^{\alpha}}{n!}$$

or

$$\left(\frac{M_l^\alpha}{l!}\right)^{1/l} \leqslant K_1 \left(\frac{M_n^\alpha}{n!}\right)^{1/n}.$$

If n is not a multiple of l, let $lm \le n \le l(m+1)$ so that, using Stirling formula and the fact that $\{(N_n^c)^{1/n}\}$ is increasing, we get

$$\left(\frac{M_n^{\alpha}}{n!}\right)^{1/n} = \frac{\left(n^{(1-\alpha)n}M_n^{\alpha}\right)^{1/n}}{\left(n!\right)^{1/n}n^{1-\alpha}} \geqslant \frac{\left((ml)^{(1-\alpha)ml}M_{ml}^{\alpha}\right)^{1/ml}}{\left(n!\right)^{1/n}n^{1-\alpha}} \geqslant \frac{1}{2^{2-\alpha}K_1e} \cdot \left(\frac{M_l^{\alpha}}{l!}\right)^{1/l}.$$

Thus for $n \ge l$

$$\left(\frac{M_l^{\alpha}}{l!}\right)^{1/l} \leqslant K\left(\frac{M_n^{\alpha}}{n!}\right)^{1/n},$$

where K is independent of l and n and this completes the proof of the theorem.

If $\alpha = 0$, then in the notation of S. Mandelbrojt (cf. [5, p. 227]) $M_n^0 = M_n^d$ for all $n \ge 1$ and Theorem 1 yields the following characterization of the inverse-closed algebra $\mathscr{C}_M(\mathbf{R}_+)$.

THEOREM 2. The following assertions are equivalent:

- (a) The sequence $A^d = \{A_n^d\}$, where $A_n^d = (M_n^d/n!)$, is almost increasing.
- (b) If $f \in \mathscr{C}_M(\mathbf{R}_+)$ and g is analytic in a domain containing the range of f, then $g \circ f \in \mathscr{C}_M(\mathbf{R}_+)$.
 - (c) $\mathscr{C}_{M}(\mathbf{R}_{+})$ is inverse-closed.

REFERENCES

- 1. J. Boman and L. Hörmander, Classes of infinitely differentiable functions (mimeographed notes), Stockholm, 1962.
- 2. J. Bruna, On inverse closed algebras of infinitely differentiable functions, Studia Math. 69 (1980), 61-67.
- 3. B. I. Korenbljum, Conditions of non-triviality of certain classes of functions analytic in a sector and problems of quasi-analyticity, Soviet Math. Dokl. 7 (1966), 232-236.
- 4. P. Malliavin, Calcul symbolique et sous algèbres de $L^1(G)$, Bull. Soc. Math. France 87 (1959), 181-186
 - 5. S. Mandelbrojt, Séries adhérentes, regulatisation des suites, applications, Gauthier-Villars, Paris, 1952.
- 6. W. Rudin, Division in algebras of infinitely differentiable functions, J. Math. Mech. 2 (1962), 797-809.
- 7. J. A. Siddiqi and A. El Koutri, Cartan-Gorny-Kolmogorov type inequalities for generators of analytic semi-groups and cosine operator functions, preprint.

DÉPARTEMENT DE MATHÉMATIQUES, STATISTIQUE ET ACTUARIAT, UNIVERSITÉ LAVAL, CITÉ UNIVERSITAIRE, QUÉBEC, G1K 7P4, CANADA