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UNIQUENESS OF POSITIVE SOLUTIONS
OF THE HEAT EQUATION

HAROLD DONNELLY

ABSTRACT. Uniqueness is proved for positive solutions of the heat equation

on complete Riemannian manifolds with Ricci curvature bounded from below.

1. Introduction. Let M be a complete Riemannian manifold with Ricci curva-

ture bounded from below. The Laplacian of M, acting on functions, will be denoted

by A. The associated heat equation problem is

(d/dt-A)u(x,t) = 0

u{x,0) = f(x).

We assume that u(x,t) is a continuous function on M x [0, co).

There have been several recent results on uniqueness for u lying in various func-

tion spaces. In [3], Dodziuk proved uniqueness for bounded and continuous u.

Strichartz [10] proved Lp uniqueness, 1 < p < co. Karp and Li [5] gave a unified

proof of these results by working in appropriate weighted Lp-spaces.

In this paper, we consider positive solutions of the heat equation. Let K(x, y, t)

be the fundamental solution. Our main result is

THEOREM 1.1.   Ifu(x,t) is any nonnegative solution of the heat equation, then

u(x,t) = /   K{x,y,t)f(y)dy.
Jm

In particular, the integral converges and u is uniquely determined by its initial data

f-

If M is the real line, then Theorem 1.1 is due to Widder [11]. We follow the

outline of his proof. However, an explicit formula for K(x, y, t) is no longer avail-

able. One must use appropriate estimates instead. In particular, this provides an

interesting application of the lower bound of the heat kernel, an estimate of Cheeger

and Yau [1].

A different proof for uniqueness of positive solutions has been obtained indepen-

dently by Li and Yau [8]. For manifolds of bounded geometry, one may consult

Koranyi and Taylor [6].

2. Reduction to zero initial data. Let K(x, y, t) be the fundamental solution

of the heat equation, as in [3]. Then K(x,y,t) is the positive solution obtained by

taking a 6 measure, at y, as initial data. Suppose that u(x, t) is any nonnegative
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solution of the heat equation. One has

LEMMA 2.1. u(x, t) > fM K(x,y,t)u(y,0)dy. In particular, the integral con-

verges.

PROOF. Let Di be an exhaustion of M by relatively compact domains. Suppose

that (pi is a nonnegative continuous function of compact support, which is equal

to one on Vx. Set üi(x,t) = fM K(x,y,t)cpi(y)u(y,0) dy. Then u¿ satisfies the heat

equation since the integral has compact support. Also, üi(x, t) vanishes at infinity,

for fixed t, since the heat semigroup preserves the bounded continuous functions'

vanishing at infinity [3, p. 713]. Applying the maximum principle of [3, p. 705] to

the compact domains Dj, j > i, we obtain u{x, t) — üi(x, t) > —e,-, for x G Dj. Since

üi vanishes at infinity, e3 —> 0 as j —> oo. This gives u(x,t) > üt(x,t) for x G M.

Recalling the definition of w¿ and applying the monotone convergence theorem gives

Lemma 2.1.

We introduce the notation ü(x,t) = fM K(x,y,t)u(y,0)dy. Lemma 2.1 states

that u > ù. We will eventually prove equality. One first observes

LEMMA 2.2. ü(x,t) satisfies the heat equation. Moreover, ù{x,t) is continuous

and has initial values u(x,0).

PROOF. The functions ü¿ form a nondecreasing sequence of solutions to the heat

equation. Moreover, the local L1-norms of «¿(z,r),0 < £i < t < t2, are uniformly

bounded since w¿(x, í) < u(x, t). Therefore, one may apply the convergence criterion

of [3, p. 711]. This proves that ü satisfies the heat equation and is continuous on

M x (0, oo). Alternatively, we could directly apply classical interior estimates [4],

instead of [3, p. 711].

It remains to check that ù has the required initial values. Suppose that D is a

sufficiently small relatively compact domain containing x. Then

u(x,Q) = livn u(x,t) > lim¿(x,í)
v      '     t^o ~ t->o

and

lim ü(x, t) = lim  /   K(x, y, t)u(y,0)dy > lim  /  K(x,y,t)u(y,0) dy.

However, by the local asymptotic expansion of the heat kernel [1, p. 468]:

lim /  K(x,y,t)u(y,0)dy = u(x,0).
t~* ° Jd

Combining the above inequalities gives u(x,0)  = \imt^où{x,t)-    The proof of

Lemma 2.2 is complete.

In summary, w{x,t) — u{x,t) — ü(x,t) is a nonnegative solution of the heat

equation with zero initial data.

3. Uniqueness of positive solutions. Let w(x, t) be a nonnegative solution

of the heat equation with w(x, 0) = 0. We need to show that w(x,t) = 0. Define

v(x,t) = JQ w(x,s)ds. Clearly, it suffices to show that v vanishes identically, since

w is nonnegative. One begins by observing, as in [11]:
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LEMMA 3.1.   vt = Av = w. In particular, v is nonnegative, satisfies the heat

equation, and is subharmonic in x.

PROOF. Obviously, vt = w, by the fundamental theorem of calculus. Also

Av —  /   Aw(x, s) ds —  /   wa(x,s)ds = w(x, t) - w(x,0) = w(x,t).
Jo Jo

The differentiation under the integral is justified by local regularity theorems for

parabolic equations [4, p. 75].

We now obtain a growth estimate for v(x, t). Suppose that r(p, x) is the geodesic

distance from a fixed basepoint p in M. One has

LEMMA 3.2.   For any e > 0 and 0 < t < e we may write

v(x,t) < Ciexp(C2r2(p,x)).

The constants C\ and C2 are independent oft.

PROOF.   Let B denote the ball centered at x and having radius r(p,x) + 1.

Suppose that T > 0 is arbitrary. Lemma 2.1 gives:

v{p,t + T)> f  K{p,y,T)v{y,t)dy> [ K{p,y,T)v{y,t)dy.
JM JB

The main result of [1] is a lower bound for the heat kernel,

K(p,y,T) > C3exp(-GV2(p,y)).

However, y G B, so from the triangle inequality r(p, y) < 2r(p, x) + 1. Substitution

yields

v{y, t) dy < Cs exp(C76r2(p,x))v{p, t + T).LIB
The mean value estimate of [7], applied to the nonnegative subharmonic function

v, gives

v{x,t) < C7exv{C$r{p,x)) /  v{y,t)dy.
Jb

Combining the last two inequalities yields

v{x, t) < C9 exp(Ci0r2(p, x))v{p, t + T).

As t varies over the interval 0 < t < e, the quantity v(p, t + T) remains uniformly

bounded in t. This proves Proposition 3.2.

To complete the proof of Theorem 1.1, we recall the following.

PROPOSITION 3.3. Letv(x,t) be any solution of the heat equation, for (x,t) G

M x [0, e], which satisfies

\v{x,t)\ < CieCjr2(p'x)

for some C\ and C2. Ifv(x,0) = 0, then v is identically zero.

PROOF. This follows from the method of [2, pp. 1038-1039]. For additional
details, and generalizations to weighted Lp-spaces, the reader may consult [5].

By Lemma 3.2 and Proposition 3.3, one has that v is identically zero. Thus

w = u — ü is identically zero. Recalling the definition of Ü, we have u(x, t) —

fM K(x,y,t)f(y)dy, where u(y,0) — f{y). This completes the proof of Theo-
rem 1.1.
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